Technical report Volume 3 – Appendix E

Prepared for National Blood Authority

Project

Update of Patient Blood Management Guideline for Adults with Critical Bleeding

The Commonwealth of Australia as represented by the National Blood Authority

> CONFIDENTIAL prepared by **HT**ANALYSTS Pty Ltd

February 2023

Note

This volume presents the data extraction forms (Appendix E) that outline the characteristics of reviews and studies included in the systematic literature review on Patient Blood Management in people with critical bleeding. Volume 1 presents the methods and main body of evidence and Volume 2 presents Appendix A (literature search results) through to Appendix D (critical appraisal or risk of bias forms). These three volumes cover all research questions developed for this topic.

Contents

Conten	ts	3
Append	dix E Data extraction forms	5
E1	Prognostic factors (Question 1)	5
	Systematic reviews/meta-analyses	5
	Prospective cohort studies	
	Retrospective cohort studies	
	Single-arm analysis of RCT	
E2	Massive haemorrhage protocol (Question 2)	43
	Systematic reviews/meta-analyses	43
	Randomised controlled trials	
	Observational / cohort studies	
E3	RBC ratios, timing, dose (Question 3)	61
	Systematic reviews/meta-analyses	61
	Randomised controlled trials	
	Observational / cohort studies	
E4	RBC volume (Question 4)	96
	Systematic reviews/meta-analyses	
	Prospective cohort studies	101
	Retrospective cohort studies	
E5	Recombinant activated factor VII (Question 5)	
	Systematic reviews/meta-analyses	
	Randomised controlled trials	
E6	Blood components (Question 6)	
	Systematic reviews/meta-analyses	
	Randomised controlled trials	
	Observational / cohort studies	
E7	Tranexamic acid (Question 7)	
	Systematic reviews/meta-analyses	
	Randomised controlled trials	
	Observational / cohort studies	
E8	Viscoelastic testing (Question 8)	
	Systematic reviews/meta-analyses	

Contents

	Randomised controlled trials	247
	Observational / cohort studies	
E9	Cell salvage (Question 9)	254
	Systematic reviews/meta-analyses	254
	Randomised controlled trials	
	Observational / cohort studies	

Appendix E Data extraction forms

El Prognostic factors (Question 1)

Systematic reviews/meta-analyses

STUDY DETAILS: Razzaghi 2012

Citation

Razzaghi, A., & Barkun, A. N. (2012). Platelet transfusion threshold in patients with upper gastrointestinal bleeding: A systematic review. *Journal of Clinical Gastroenterology*, 46(6), 482-486. doi:10.1097/MCG.0b013e31823d33e3

	nds		
Details on funding or po	stential conflicts of interest not	t provided.	
Study design	Level of evidence	Location	Setting
Narrative SR of RCTs, observational studies ar case-series	I-III nd	NR	Surgery (nonvariceal upper GI bleeding)
Prognostic Factor	I	Comparator	
Platelet transfusion		NA	
Population characteris	tics	I	
Patients with thromboo Patient populations var hematopoietic progenit	ytopenia in the setting of nonvied between studies, including for cell transplant, and gynaec	variceal upper GI bleeding. 9 patients with leukemia, bone marrov ologic cancer.	w transplant,
Length of follow-up		Outcomes measured	
OVID, MEDLINE, EMBAS knowledge 4.0 were sea January 1950 and Febru	SE, CENTRAL, and ISI Web of arched for Citations between ary 2011.	Transfusion volume	
INTERNAL VALIDITY			
Overall QUALITY of the	systematic review (descript	ive)	
Description: More than critical flaw and should Insufficient reporting of meta-analysis was perfor Risk of bias for included Risk of bias for included	one critical flaw with or withou not be relied on to provide an search strategy, no list of exclu- presed and funding source or u	ut non-critical weaknesses – the review accurate and comprehensive summa uded studies with justification, no risk	w has more than one ry of the available studies.
	<i>I studies:</i> studies was not conducted by	potential conflict of interest was not re y the review authors.	: of bias conducted, no eported.
RESULTS:	I studies: studies was not conducted by Results (narrative)	potential conflict of interest was not re y the review authors.	Statistical significance
RESULTS: Outcome No. patients (No. trials)	I studies: studies was not conducted by Results (narrative)	potential conflict of interest was not re	Statistical significance ported. Statistical significance p-value Heterogeneity ^a I ² (p-value)
RESULTS: Outcome No. patients (No. trials) Platelet count	I studies: studies was not conducted by Results (narrative)	potential conflict of interest was not re	Statistical significance p-value Heterogeneity ^a l ² (p-value)

STUDY DETAILS: Ra	zzaghi 2012					
Zumberg 2002 Dietrich 2005	context, with most haemorrhagic events occurring at platelet counts of 10×10 ⁹ /L or greater. - Target platelet count in those with active haemorrhage is 50×10 ⁹ /L, however in some clinical settings should be up to 100×10 ⁹ /L.					
EXTERNAL VALIDITY						
Generalisability (releva	ance of the study population to the Guidelines target population)					
The evidence is not directly generalisable to the Australian population, and it is hard to judge whether it is sensible to apply. Limited evidence is given regarding the populations of included studies. Some studies include prophylactic platelet transfusion, which is not relevant to the target population.						
Applicability (relevanc	e of the evidence to the Australian health care system)					
The evidence is not app	plicable to the Australian healthcare context. Studies included in the review are published prior					

The evidence is not applicable to the Australian healthcare context. Studies included in the review are published prior to 2005. It is unclear if these studies accurately represent current practice or consensus, and therefore applicability of the evidence to the Australian health care system is unknown.

Additional comments Authors conclusions:

In conclusion, the review found there was lack of directly applicable, high quality study results that were able to inform optimal therapeutic platelet count transfusion volumes in patients with acute upper GI bleeding.

The SR found no studies that assessed patients with upper GI haemorrhage, and therefore generalised findings from haematology and oncology patients. A target platelet count of between 50×10^9 /L and 100×10^9 /L has been suggested depending on the clinical setting. Most studies recommended a platelet count of 10×10^9 /L as trigger for transfusion. Lack of quality studies highlights the need for quality RCT evidence to address the clinical question more precisely.

List of relevant included studies:

Gmur 1991, Fanning 1995, GilFernandez 1996, Rebulla 1997, Heckman 1997, Wandt 1998, Lawrence 2001, Navarro 1998, Zumberg 2002, Dietrich 2005

Cl, confidence interval; Gl, gastrointestinal; ITT, intention-to-treat; NA, not applicable; NR, not reported; RCT, randomised controlled trial; SR, systematic review

Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet > 0.1 and I2 < 25%; (ii) mild heterogeneity if I2 < 25%; moderate heterogeneity if I2 between 25–50%; substantial heterogeneity I2 > 50%.

Citation Pacagnella 2013				
Pacagnella 2013				
Pacagnella, R. C., Souza, J. P., I Review of the Relationship be doi:http://dx.doi.org/10.1371/jou	Durocher, J., Perel, P., Blum, etween Blood Loss and Clinic urnal.pone.0057594	J., Winikoff, B., & Gulmez cal Signs. PLoS ONE, 8 (3	zoglu, A. M. (2013). A Systematic i) (no pagination)(e57594).	
Affiliation/Source of funds				
The study was funded by Gyn	uity Health Projects and the	World Health Organiza	tion	
Author affiliations:				
The authors declared no conf	licts of interest.			
Study design	Level of evidence	Location	Setting	
Systematic review of observational studies	1-111	USA, Japan	Obstetrics (using general trauma as a proxy)	
Prognostic factor		Comparator	· · · · · · · · · · · · · · · · · · ·	
SBP, SI, HR		N/A		
Population characteristics				
Patients with haemorrhage				
Length of follow-up		Outcomes measure	d	
Medline, EMBASE, Lilacs, Scie were searched in February 20	lo, ISI and Google Scholar)12.	Blood loss ^b Mortality		
INTERNAL VALIDITY				

HTANALYSTS | National Blood Authority | Critical bleeding | Technical report vol.3

STUDY DETAILS: Pacagnella 2013

Overall risk of bias (descriptive)

Rating: Serious

Description:

More than one critical flaw with or without non-critical weaknesses – the review has more than one critical flaw and *should not be relied on* to provide an accurate and comprehensive summary of the available studies. Review provided insufficient detail on included studies, did not provide list of excluded studies, and did not account for study risk of bias when attempting to interpret results.

Included studies: The STROBE checklist to assess risk of bias. Nine (of 30) studies were considered of high quality. 21 studies did not describe or provide sufficient detail of the study population, the health status of the population or the inclusion criteria. Most studies did not provide information regarding the method of assessment of clinical signs.

RESULTS:						
Outcome	[intervention]	[comparator]	Statistical analysis	Statistical significance		
No. patients	n/N (%)	n/N (%)		<i>p</i> -value		
(No. trials)	Mean ± SD	Mean ± SD		Heterogeneity ^a		
				l² (p-value)		
SBP	1		1			
Mortality	Due to inconsistencie	es in study design and	NR	NR		
N = 19,759	limited reporting of d	lata a qualitative				
(4 studies)	an association betwee	ed. All studies found en low SBP and				
Bruns 2008	mortality.					
Cancio 2008						
Edelman 2007						
Vandromme 2010						
Blood loss ^b	six studies assessed t	he relationship	AUC	NR		
N = 28,442	between SI and blood	d loss. The studies				
(6 studies)	found an association	between SI and blood				
	loss.					
Brasel 2007			NR			
Chen 2007			0.71			
Hagiwara 2010			NR			
Vandromme 2010			0.6			
Vandromme 2011b			0.79			
Zarzaur 2008			0.71			
SI						
Mortality	One study assessed t	he relationship	NR	NR		
N = 16,077	between SI and mort	ality. The study found				
(1 study)	an association betwe	en SI and mortality.				
Zarzaur 2008						
Blood loss ^b	Three studies assesse	d the relationship	AUC	NR		
N = 16,830	between SI and blood	l loss. The studies				
(3 studies)	found an association	between SI and blood				
	IOSS.					
Chen 2007			0.77			
Hagiwara 2010			NR			
Zarzaur 2008			0.78			
HR						
Blood loss ^b	Five studies assessed	the relationship	AUC	NR		
N = 28,169	between HR and bloc	od loss. The studies				
(5 studies)	found an association	between HR and				
	DIOOD IOSS					

STUDY DETAILS: Pacagnella 2013

Brasel 2007		0.56-0.59	
Chen 2007		0.66	
Hagiwara 2010		NR	
Vandromme 2011b		0.65	
Zarzaur 2008		0.73	
Mortality	One study assessed the relationship	NR	NR
N = 16, 077	between HR and mortality. The study		
1 study	found an association between HR and mortality		

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is not directly generalisable to the Australian population, and it is hard to judge whether it is sensible to apply. The study attempts to generalise general trauma data to the obstetric setting, however there are significant differences between trauma and obstetric populations that make this generalisation incorrect, as identified in the study.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is not applicable to the Australian healthcare context. Included studies are conducted in the USA and Japan, studies that met inclusion criteria were indirect measurements that used proxies to estimate blood loss. The study did not provide sufficient details of included studies to accurately validate applicability to the Australian health care context.

Additional comments

Authors conclusions:

The review found a substantial variability in the relationship between blood loss and clinical signs, making it very difficult to establish specific cut-off points for clinical signs that could be used as triggers of clinical interventions. However, the shock index was found to be an accurate indicator of compensatory changes in the cardiovascular system due to blood loss.

Included studies:

Vandromme 2011b, Hagiwara 2010, Vandromme 2010, Bruns 2008, Cancio 2008, Chen 2007, Chen 2008, McLaughlin 2009, Zarzaur 2008, Brasel 2007, Edelman 2007

AUC, area under the curve; Cl, confidence interval; HR, heart rate; ITT, intention-to-treat; MD, mean difference; N/A., not applicable; NR, not reported; PP, per-protocol; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation; SBP, systolic blood pressure; SI, shock index; STROBE. Strengthening the Reporting of Observational studies in Epidemiology

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet
 > 0.1 and I2 < 25%; (ii) mild heterogeneity if I2 < 25%; moderate heterogeneity if I2 between 25–50%; substantial heterogeneity I2 > 50%.
 b Blood loss is defined as the amount of blood loss that requires triggering of clinical intervention in the management of post-partum haemorrhage.

STUDY DETAILS: Abdul-Kadir 2014

Citation

Abdul-Kadir, R., McLintock, C., Ducloy, A. S., El-Refaey, H., England, A., Federici, A. B. et al. Evaluation and management of postpartum hemorrhage: Consensus from an international expert panel. Transfusion. 2014; 54(7): 1756-1768. http://dx.doi.org/10.1111/trf.12550

Affiliation/Source of funds

Author affiliations: Royal Free Hospital, London; Auckland City Hospital; Centre Hospitalier Régional Universitaire de Lille, Lille, France; Chelsea &Westminster Hospital and Imperial College School of Medicine, London; L. Sacco University Hospital, University of Milan, Italy; Duke University School of Medicine, Durham, North Carolina; Coagulation Center Rhine Ruhr Area, Duisburg, Germany; Thomas Jefferson University Hospital, Philadelphia, Pennsylvania; University of Heidelberg, Germany; University of Virginia, Charlottesville, Virginia; The Mary M. Gooley Hemophilia Treatment Center and the Rochester General Hospital, Rochester, New York; Yale University School of Medicine, New Haven, Connecticut; Università degli Studi di Milano and Luigi Villa Foundation, Milan, Italy; University of Montreal, Montréal, Québec, Canada.

Funding and conflict of interests: The authors received funding support and honoraria from CSL Behring to attend the consensus meeting but report no other conflicts of interest or funding sources.

STUDY DETAILS: Ab	odul-K	adir 2014				
Study design	Level of evidence Location				Setting	
Expert consensus and observational studies	SR of	1-111		NR		Obstetrics
Prognostic factor				Comparator		
Platelet count, Haemoglobin level, Temperature, Fibrinogen				Not applicable		
Population characteri	istics					
PPH						
Length of follow-up				Outcomes me	asured	
Date of systematic sea meeting was held in N	rch no ovemb	t provided. Consensu per 2011	S	Blood loss >500 Requirement c)mL If transfusion	
INTERNAL VALIDITY	Y					
Overall QUALITY of th	e syste	ematic review (desc	riptive)			
Rating (AMSTAR): Critically low Description: More than one critical flaw with or without non-critical weaknesses – the review has more than one critical flaw and should not be relied on to provide an accurate and comprehensive summary of the available studies. Review did not provide sufficient detail of included studies, did not perform risk of bias assessment, did not perform a meta-analysis, and did not discuss the heterogeneity of studies. Risk of bias included studies: Risk of bias was not reported.						has more than one y of the available studies. sment, did not perform a
Outcome	linter	ventionl	Icompar	atorl	Risk	Statistical significance
No. patients (No. trials)	[Intervention][comparator]n/N (%)n/N (%)Mean ± SDMean ± SD		SD	estimate: OR (95% CI)	p-value Heterogeneity ^a I ² (p-value)	
Platelet count						
Blood loss >500mL N = NR (1 study) Al-Zirqi 2008	One st associ >500m	udy found that low p ated with greater risk nL	olatelet co c of PPH w	unt was ⁄ith blood loss	1.9 (NR)	NR
Haemoglobin level						
Blood loss >500mL N = NR (1 study) Al-Zarqi 2008	One st haemo PPH w	udy found that existi oglobin) was associat vith blood loss >500m	ng anaem ed with g nL	nia (<9 g/dL reater risk of	2.2 (NR)	NR
Temperature						
Blood loss >500mL N = NR (1 study) ROCOG 2017	One study found that a raised body temperature during labour was associated with a greater risk of PPH with blood loss >500mL2.0 (NR)NR					NR
Fibrinogen						
Requirement of transfusionThree studies assessed the association between PPH requiring transfusion and fibrinogen levels.N = NR (4 studies) Charbit 2007 Cortet 2012-Two studies (Charbit 2007, Cortet 2012) reported a lower (≤ 2 g/L) mean plasma fibrinogen level in women who developed more severe PPHPeyvandi 2012 was unable to determine if decreased fibrinogen is an independent and measurable predictor of severe PPH or simply a measure of blood lossRouse 2006						
EXTERNAL VALIDIT	γ					
Generalisability (relev	ance o	of the study populati	ion to the	Guidelines targ	et population)	
The evidence is not dir	ectly g	eneralisable to the Au	ustralian p	population, and i	t is hard to judge	e whether it is sensible to

apply. There is limited information provided on the population of included studies and considering ethnicity, age, and other population-relevant factors affect risk of PPH, it is not possible to accurately judge generalisability of the review.

STUDY DETAILS: Abdul-Kadir 2014

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats. The international expert consensus is probably applicable to the Australian health care system however it is difficult to judge due to limited data provided on included studies.

Additional comments

Authors conclusions:

The numerous risk factors for PPH necessitate a multidisciplinary management that requires early and regular monitoring of pregnant women.

List of relevant included studies:

Al-Zirgi 2008, Charbit 2007, Combs 1991, Cortet 2012, Pevandi 2012, ROCOG 2017, Rouse 2006

Cl, confidence interval; not applicable, not applicable; NR, not reported; OR, odds ratio; PPH, post-partum haemorrhage; SD, standard deviation; SR, systematic review

Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet > 0.1 and I2 < 25%; (ii) mild heterogeneity if I2 < 25%; moderate heterogeneity if I2 between 25–50%; substantial heterogeneity I2 > 50%.

STUDY DETAILS: Haas 2015

Citation

Haas, T., Fries, D., Tanaka, K. A., Asmis, L., Curry, N. S., & Schochl, H. (2015). Usefulness of standard plasma coagulation tests in the management of perioperative coagulopathic bleeding: is there any evidence? British Journal of Anaesthesia, 114(2), 217-224. doi:https://dx.doi.org/10.1093/bja/aeu303

Affiliation/Source of funds

Funding: funding was received from CSL Behring to perform literature searches. The authors received no funding support for writing of the manuscript and all writing was performed by the authors.

Author affiliations: CSL Behring GmbH, Octapharma AG, TEM International, TEM Innovations Fresenius Kabi, and B Braun AG. Austrian National Bank, AOP Orphan, Pfizer, Astra Zeneca, Baxter, Biotest, Fresenius, Glaxo, Haemoscope, Hemogem, Lilly, LFB, Mitsubishi Pharma, NovoNordisk, Octapharm, and Tem International. LFB, Austrian Society for Anesthesiology, Intensive Care and ResusCitation, German Interdisciplinary Society for Intensive Care Medicine (DIVI), European Society of Intensive Care Medicine (ESA) Society for Thrombosis and Haemostasis (GTH), European Society of Intensive Care Medicine (ESICM).

Study design	Level of evidence	Location Setting			
Systematic review	1-111	USA, Australia	Trauma (Hess 2009,		
		Hess 2009, USA	Ciavarella 1987, Mitra 2007)		
		Mitra 2007, Australia	Surgery (Mannucci 1982)		
		Mannucci 1982, NR			
		Murray 1988, USA			
		Ciavarelli 1987, NR			
Prognostic factor	·	Comparator			
INR, PT, aPTT		NA			
Population characteristics					
Patients with critical bleedin	g (trauma patients admitted t	o the emergency room)			
Length of follow-up		Outcomes measured			
Ovid Medline was searched between 1950 and November 2013		Mortality			
INTERNAL VALIDITY					
Overall QUALITY of the systematic review (descriptive)					
Rating {AMSTAR): Critically low					
Description: More than one critical flaw with or without non-critical weaknesses – the review has more than one					

critical flaw and should not be relied on to provide an accurate and comprehensive summary of the available studies. Review did not employ a comprehensive search strategy, did not provide sufficient information on included studies and did not provide a list of excluded studies.

STUDY DETAILS: H	laas 2015						
RESULTS:							
Outcome No. patients (No. trials)	[intervention] n/N (%) Mean ± SD	[comparator] n/N (%) Mean ± SD	Risk estimate (95% CI)	Statistical significance p-value Heterogeneity ^a			
INR							
Mortality							
N = 35441 (2 studies)							
Hess 2009	an INR of \geq 1.3 was associated with a 6.3-fold increased risk of in-hospital mortality						
Mitra 2007	INR is a predictor o	of mortality with an OR	of 1.62 (95% CI: 1.18–2.24, p	o < 0.01)			
PT and aPTT				,			
Mortality							
N = 155 (2 Studies)	microvascular blee	ding was associated w	ith severe abnormalities of	of coagulation factor levels.			
Ciavarella 1987	20% (PT and aPTT v	values 1.8 times contro).				
Mitra 2007	aDTT is a predictor	of mortality with an O	/ D of 1 01 (95% CI-1 01_1 02 /	n < 0 01)			
Transfusion volume			R 01 1.01 (55% Cl. 1.01–1.02, p				
N = ND (2 studies)		autod a DT x 12 time og u		normalizzation for undia 070/ a			
N – NR (2 studies)	natients who unde	erwent major surgery a	nd received massive trans	sfusion. However De Backer			
Mannucci 1982	2008 concluded P	F and aPTT are not use	ful for guidance of FFP tra	ansfusion in severe bleeding			
Murray 1998	recommended FFF transfusion.	P transfusion if PT or al	PPT is >1.5 times prolonge	d during massive			
EXTERNAL VALID	ITY						
Generalisability (rele	evance of the study	population to the Gui	delines target populatio	n)			
are referenced from / to determine if the poper perioperative and em general population.	Australian and British opulation can be dire nergency trauma pat	n management guidel ectly generalised to the ients however, the sm	nes, however there is insu Australian population. The all study population may	ifficient evidence provided ne inclusion of both not accurately represent the			
Applicability (releva	nce of the evidence	to the Australian hea	Ith care system)				
The evidence is direc publications referenc system. The inclusior	tly applicable to the ed by Australian and of old studies may r	Australian healthcare of British guidelines and educe the applicability	context with few caveats. I therefore is applicable to of the evidence.	The review includes o the Australian health care			
Additional commen	ts						
Authors conclusions:							
The authors conclude bleeding in the perio Quality of studies is p a more comprehensi	e that there are signi perative or trauma se poor. Newer methods ve analysis and provi	ficant shortcomings of etting. Current trigger s such as viscoelastic te de the results more qu	using INR, PT, and aPTT i levels are not supported b sting should be used as a lickly.	n the management of majo by evidence-based data, in alternative as they provide			
Included studies:							
Hess 2009, Mitra 200	7, Ciavarella 1987, Ma	nnucci 1982, Murray 19	98				
PTT, activated partial thr difference; PP, per-pr a. Only applicable to Leve > 0.1 and I2 < 25%; (ii) r	omboplastin time; CI, c otocol; PT. prothrombin I I studies with formal n mild heterogeneity if I2	onfidence interval; INR, in time; RCT, randomised co neta-analysis. Heterogene < 25%; moderate heteroge	ernational normalised ratio; ontrolled trial; RR, relative risk ity defined as follows: (i) no si eneity if I2 between 25–50%; s	ITT, intention-to-treat; MD, mear ;; SD, standard deviation gnificant heterogeneity if Phet ubstantial heterogeneity I2 > 50			
STUDY DETAILS: E	Baxter 2016						
Citation							
Baxter, J., Cranfield. k	K. R., Clark, G., Harris. ⁻	T., Bloom, B., & Gray, A.	J. (2016). Do lactate levels	in the emergency			
department predict of	outcome in adult trai	uma patients? A syster	natic review. Journal of Tr	auma and Acute Care			

Surgery, 81(3), 555-566. doi:http://dx.doi.org/10.1097/TA.000000000001156

Affiliation/Source of funds

Funding: Details on funding was not provided. The authors declared no conflicts of interest.

STUDY DETAILS: Baxter 2016

Author affiliations: University of Edinburgh, Edinburgh; St John's Hospital, Livingston; Royal Infirmary of Edinburgh, Edinburgh; Barts Health NHS Trust; Queen Mary University of London, London; Emergency Medicine Research Group Edinburgh (EMeRGE), Edinburgh, United Kingdom.

Study design	Level of evidence	Location	Setting				
SR of cohort studies	1-111	All included studies were from developed countries (e.g. USA)	Trauma/Emergency department				
Prognostic factor		Comparator					
Lactate		NA					
Population characteristics							
Adult (age>16), trauma patier	Adult (age>16), trauma patients who had initial lactate measurements taken on arrival to hospital						
Length of follow-up		Outcomes measured					
Medline, Embase and CINAH for Citations between 1980 ar CDSR were used to search fo cited articles.	L databases were searched nd March 2016. DARE and r reference and relevant	Mortality Transfusion volume					
INTERNAL VALIDITY							
Overall QUALITY of the systematic review (descriptive)							

Rating (AMSTAR): Critically low

Description: More than one critical flaw with or without non-critical weaknesses – the review has more than one critical flaw and *should not be relied on* to provide an accurate and comprehensive summary of the available studies. Selection of Study design was not described, and list of excluded studies was not provided.

Risk of bias of included studies: Reporting of recruitment methods were poor, and it was unclear if there was adequate participation of eligible individuals, with subsequent risk of selection bias. Risk of attrition bias was high in all studies, as the reporting of numbers of participants and those lost to follow-up were universally poor. Risk of bias relating to study confounding was high or moderate in most studies.

RESULTS:

Outcome No. patients (No. trials)	Survivors Lactate (mmol/L) Mean ± SD	Non-survivors Lactate (mmol/L) Mean ± SD	Risk estimate Adjusted OR (95% CI)	Statistical significance p-value Heterogeneityª I² (p-value)		
Lactate						
Mortality						
N = 34,120						
All trauma						
(9 studies)						
Duane 2008	NR	NR				
Initial > 2.2 mmol/L			1.067 (0.887–1.283)	NR		
24 hrs > 2.2 mmol/L	NR	NR	1.79 (1.259–2.546)	NR		
Dezman 2015	NR	NR	NR	NR		
Lavery 2000						
Arterial ≥ 2.0 mmol/L	NR	NR	1.1 (0.978–1.15)	NR		
Venous ≥ 2.0 mmol/L	2.5 (1.8)	3.8 (3.0)	1.2 (1.15–1.35)	NR		
Mizushima 2011			1.21 (1.15–1.29)	NR		
Odom 2012						
< 2.5 mg/dL			1.0 (reference)	< 0.001		
2.5–3.9 mg/dL			1.5 (1.1–2.0)			
≥ 4.0 mg/dL			3.8 (2.8–5.3)			
Pal 2006	3.0 (0.04)	5.2 (0.3)	NR	<0.001		
Parsikia 2014	2.1 (NR)	3.2 (NR)	1.01 (1.00–1.02)	<0.001		
Regnier 2012						
Initial	1.4 (0.4)	1.5 (0.4)	NR	0.77		
2hr	1.6 (0.8)	1.7 (0.8)	NR	0.82		

STUDY DETAILS: Baxte	r 2016			
Schmelzer 2008				
Venous	3.4 (2.6)	4.0 (2.9)	NR	0.1999
Arterial	3.4 (2.9)	4.2 (2.9	NR	0.0656
Subsets of trauma				
patients				
(14 studies)				
Aslar 2004				
≥ 4 mmol/L	2.64 (1.08)	7.98 (3.8)	10.58 (1.88–59.24)	< 0.001
Baron 2004	3.1 (2.5, 3.7)	6.2 (3.5, 8.8)	NR	0.03
Blow 1990	NR	NR	NR	< 0.05
Callaway 2009				
> 4 mmol/L	2.8 (1.8)	2.0 (1.0)	4.2 (2.4-7.5)	< 0.001
F-Montali 2009	2.9 (2.0)	5.0 (4.9)	NR	0.007
Ipekci 2013	3.3. (1.7)	7.7 (4.2)	NR	< 0.01
Kaplan 2003	3.6 (1.5)	11.1 (3.6)	NR	< 0.001
Mica 2012	3.0 (2.3)	5.6 (3.9)	NR	< 0.001
Nast-Kolb 1997		4.8 (0.8)	NR	< 0.05
without organ failure	3.1 (0.3)			
with organ failure	5.0 (0.6)			
Neville 2011	NR	NR		
>2.5 mmol/L, SBP 90–109			3.7 (1.6–8.2)	NR
>2.5 mmol/L, SBP ≥ 110			4.3 (2.2–44.0)	NR
Oullet	2.2	3.6	NR	< 0.0001
Regnier	NR	NR	NR	NR
Sammour 2008	NR	NR	NR	NR
Vandromme 2010	NR	NR		NR
<2.5 mmol/L			RR 1.0 (reference)	
2.5–5.0 mmol/L			RR 2.4 (1.5–3.7)	
5.1–7.5 mmol/L			RR 3.2 (1.9–5.3)	
>7.5 mmol/L			RR 6.2 (3.7–10.3)	
Transfusion volume	In all trauma patie	nts, increased lactate	e and lactate clearance	
N = 1093	were found to pre-	dict massive haemor	rhage, defined as blood	
(3 studies)	death from bacm	acked red cell units v	within 24 hours and/or	
Regnier 2012	found to be associ	ated with increased I	blood loss in	
Baron 2004	penetrating torso	trauma patients. Two	studies found that	
Ipekci 2013	raised lactate was	associated with bloo	d product	
	requirements, but	this was not significa	ant in a study which only	
	looked at patients	with isolated extrem	iity injuries.	
EXTERNAL VALIDITY				
Generalisability (relevance	e of the study popu	lation to the Guidel	ines target population)	
The evidence is directly ger	neralisable to the Au	ustralian population v	with some caveats. Includ	ed studies were
conducted in general traur	na patients within a	n emergency depart	ment setting. Most studi	es are multi-centre
studies and in a large num	ber of participants. T	The evidence can be	sensibly generalised to th	e target population.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats. Location of studies is not provided; however, studies were conducted in developed countries. Most studies had broad inclusion criteria.

Additional comments

Authors conclusions:

The author notes the review demonstrates a clear relationship between lactate levels in injured patients and mortality. There is however, limited evidence to support specific lactate cut-off values. Additionally, there is a clear relationship between increasing lactate levels and injury severity and increased risk of poor outcome. Despite some limitations in the currently available evidence, lactate should be considered as part of the assessment of illness severity in adult trauma patients.

STUDY DETAILS: Baxter 2016

List of relevant included studies:

Baron 2004, Duane 2008, Dezman 2015, Ipekci 2013, Lavery 2000, Mizushima 2011, Odom 2012, Pal 2006, Parsikia 2014, Regnier 2012, Schmelzer 2008, Neville 2011, Vandromme 2010, Calaway 2009, Fuglister 2009, Paladino 2008, Sammour 2008, Mica 2012, Duellet 2012, Baron 2007, Aslar 2004, Kaplan 2003, Blow 1990

CDSR, Cochrane Database of Systematic Reviews; CI, confidence interval; CINAHL, Cumulative index to nursing and allied health literature; DARE, Database of Abstracts of Reviews of Effects; ITT, intention-to-treat; MD, mean difference; NA, not applicable; NR, not reported; OR, odds ratio; PP, per-protocol; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation; SR, systematic review; USA, Unites States of America

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Poole 2016 Citation Poole, D., Cortegiani, A., Chieregato, A., Russo, E., Pellegrini, C., De Blasio, E., . . . Tacconi, C. (2016). Blood component therapy and coagulopathy in trauma: A systematic review of the literature from the trauma update group. PLoS ONE. 11 (10) (e0164090). doi:http://dx.doi.org/10.1371/journal.pone.0164090 Affiliation/Source of funds Funding: No funding was received for the review. The authors declared no conflicts of interest. Author affiliations: Trauma Update Working Group, Italy Study design Level of evidence Location Setting SR and MA of controlled Not reported Trauma (military, |-||| studies obstetrical, and perioperative specifically excluded) **Prognostic factor** Comparator Hypofibrinogenemia, Platelet reduction, Increased APTT, NA Increased PT, Increased INR **Population characteristics** Patients with non-TBI trauma. Length of follow-up **Outcomes measured** Medline via PubMed searched between 9 December 2014 Mortality and 1 January 2000 **INTERNAL VALIDITY Overall QUALITY of the systematic review (descriptive)** Rating (AMSTAR): Critically low Description: More than one critical flaw with or without non-critical weaknesses - the review has more than one critical flaw and should not be relied on to provide an accurate and comprehensive summary of the available studies. Population inclusion was poorly defined, and list of excluded studies was not provided Risk of bias of included studies: The overall risk of bias for included studies was high, and quality of evidence according to the GRADE methodology was very low. There was high heterogeneity between studies and there was inadequate control for confounding. **RESULTS:** Statistical significance Outcome 28-day Mortality Risk estimate (95% CI) Odds ratio No. patients n/N (%) p-value (No. trials) **Heterogeneity**^a I² (p-value) Fibrinogen NR Mortality N = 1650 (2 studies) Hagemo 2014 99/1133 (8.7) Low fibrinogen OR 0.08 (0.03-0.20) High fibrinogen OR 1.77 (0.94-3.32) Rourke 2012 62/517 (12.0) OR 0.22 (0.10-0.47)

STUDY DETAILS: Poo	le 2016		
Platelet count			
Mortality			NR
N = 1464 (2 studies)			
Hagemo 2014	99/1133 (8.7)	OR 1 (1.0–1.0)	
Mitra 2010	99/331 (29.9)	OR 0.99 (0.99–0.99)	
INR			
Mortality			NR
N = 1464 (2 studies)			
Hagemo 2014	99/1133 (8.7)	OR 1.65 (0.65–4.18)	
Mitra 2010	99/331 (29.9)	OR 1.43 (1.02–2.01)	
PT			
Mortality			NR
N = 7638 (1 study)			
MacLeod 2003	NR	OR 1.35 (1.11–1.68)	
APTT			
Mortality			NR
N = 9336 (3 studies)			
Rourke 2012	62/517 (12.0)	OR 1.05 (1.01–1.09)	
MacLeod 2003	NR	OR 4.26 (3.23–5.62)	
Sambavisan 2011	173/1181 (14.6)	OR 1.015 (1.01–1.02)	
EXTERNAL VALIDITY	, , , , , , , , , , , , , , , , , , , ,		
Generalisability (releva	nce of the study populatio	on to the Guidelines target popu	lation)
The evidence is not direc	atly generalizable to the Au	stralian population but could be	considurantiad Location of
included studies is not re 2014, Rourke 2012, and S	eported; however, studies in ambavisan 2011) are multi-c	nclude a large number of patients centre studies. Relevance to the ta	arget population is unclear.
Applicability (relevance	e of the evidence to the Au	ustralian health care system)	
The evidence is probably not specifically provided meaning the study may	y applicable to the Australia I, however military, obstetric be applicable to general tra	an healthcare context with some of cal, and perioperative publications auma setting in the Australian he	caveats. Location and setting is s have been specifically excluded, alth care system.
Additional comments			
Authors conclusions:			
Because of heterogeneit combined. Each single s uncertainty of the result <i>Included studies</i> : Hagemo 2014. Mitra 2010	ty in design and definition o tudy provided "very low" ev s. 2. Rourke 2012, Macl eod 20	of coagulopathy, evidence from di vidence according to GRADE meth 03. Sambavisan 2011	ifferent studies could not be hodology. There is significant
APTT, activated partial throm analysis; MD, mean differ randomised controlled tr a. Only applicable to Level I st > 0.1 and I2 < 25%; (ii) mild	boplastin time; CI, confidence i ence; NA, not applicable; NR, ne ial; RR, relative risk; SD, standar tudies with formal meta-analys I heterogeneity if I2 < 25%; mod	interval; INR, internal normalised ratio; ot reported; OR, odds ratio; PR, prothro d deviation; SR, systematic review; TBI is. Heterogeneity defined as follows: (i) lerate heterogeneity if I2 between 25-5	ITT, intention-to-treat; MA, meta- ombin time; PT, prothrombin time; RCT, , traumatic brain injury I no significant heterogeneity if Phet 50%; substantial heterogeneity I2 > 50%.
STUDY DETAILS: Lev	y 2017		
Citation			
Levy, J. H., Rossaint, R., Z. perioperative settings? \	acharowski, K., & Spahn, D. Vox Sanguinis. 112(8). 704-71	R. (2017). What is the evidence for 2. doi:http://dx.doi.org/10.1111/vox.1/	platelet transfusion in 2576
Affiliation/Source of fur	nds	····· ···· ··· ··· ··· ··· ··· ··· ···	
Funding: The study was	funded by CSL Behring		
Author affiliations: Steer	ing committees for Roehrig	nger Ingelheim CSI Rehring Grif	ols and Instrumentation Labs
, la chor anniacions. Steel	ing committees for boering	ingenienti, ese berning, oni	

STUDY DETAILS: Levy 2017

Authors have received funding previously from Bayer Healthcare (Germany) and Boehringer Ingelheim (Germany), Abbott GmbH & Co KG, AbbVie Deutschland GmbH & Co KG, Aesculap Akademie GmbH, AQAI GmbH, Astellas Pharma GmbH, AstraZeneca GmbH, Aventis Pharma GmbH, B. Braun Melsungen AG, Baxter Deutschland GmbH, Biosyn GmbH, Biotest AG, Bristol-Myers Squibb GmbH, CSL Behring GmbH, Dr. F. Kohler Chemie GmbH, Dr€ager Medical GmbH, Essex Pharma GmbH, Fresenius Kabi GmbH, Fresenius Medical Care, Gambro Hospal GmbH, Gilead, GlaxoSmithKline GmbH, Gr€unenthal GmbH, Hamilton Medical AG, HCCM Consulting GmbH, Heinen+Lowenstein GmbH, Janssen-Cilag GmbH, Masimo, med Update GmbH, Medivance EU B.V., MSD Sharp & Dohme GmbH, Novartis Pharma GmbH, Novo Nordisk Pharma GmbH, P. J. Dahlhausen&Co. GmbH, Pfizer Pharma GmbH, Pulsion Medical Systems S.E., Siemens Healthcare, Teleflex Medical GmbH, Teva GmbH, TopMed Medizintechnik GmbH, Verathon Medical, Vifor Pharma GmbH and others.

Study design	Level of evidence	Location	Setting
Narrative SR of prospective	1-111	NR	Perioperative (cardiac
and retrospective studies			surgery, acute aortic
			dissection, liver transplant)
Prognostic factor		Comparator	
Platelet count		NA	
Population characteristics			
Adult patients receiving plat	elet transfusion		
Length of follow-up		Outcomes measured	
Literature search was condu	cted in Medline (PubMed) on	Platelet transfusion volume	
28 March 2017			
INTERNAL VALIDITY			
Overall QUALITY of the syst	ematic review (descriptive)		
Rating (AMSTAR): Critically lo	DW .		
Description: More than one of	critical flaw with or without no	n-critical weaknesses – the rev	iew has more than one

critical flaw and should not be relied on to provide an accurate and comprehensive summary of the available studies. Review did not provide sufficient details of included studies, did not provide list of excluded studies, did not conduct risk of bias, and did not conduct a meta-analysis.

Risk of bias of included studies: Risk of bias not assessed or reported.

RESULTS:

Outcome No. patients (No. trials)	Platelet transfusion n/N (%) Mean ± SD	No platelet transfusion n/N (%) Mean ± SD	Risk estimate (95% CI)	Statistical significance p-value Heterogeneity ^a I ² (p-value)
Platelet count				
Platelet transfusion volume N = 30 735 (7 studies) Arnold 2006 Fayed 2013 McGrath 2008 Premaratne 2001 Tanaka 2014 Wu 2014 van Hout 2017	Heterogeneity betwee possible. Included studies used platelet count, bleedir as triggers varied betw /I for interventional tre intensive care unit (Ar cardiac surgery patien administered in all stu 2013). Wu 2014 and Mo dose of transfusion ad between cardiopulmo	en studies was so substa different measurement ng (visual measure), and veen the two publication eatment in a study evalu nold 2006) to a trigger o nts (van Hout 2017). Diffe udies, ranging from 1 to 6 cGrath 2008 did not repo ministered. Premaratne	ntial that quantitations to trigger platelet is viscoelastic measures, ranging from a mating patients in a mating patients in a mating patient of <100 ×10 ⁹ /l accomprent platelet doses point a measurement for 2001 observed a characterized < 10 unit.	ve synthesis was not transfusion, including es. The platelet counts used nedian of 51 (IQR 26–68) ×10 ⁹ nixed medical/surgical panied by bleeding in per transfusion were 2017, Tanaka 214, Fayed for triggering transfusion or ange in bleeding time (NR) s or > 10 units of platelet
	transfusions.	· ·		

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is not directly generalisable to the Australian population and it is hard to judge whether it is sensible to apply. There is insufficient data provided on the included studies to determine if the findings are relevant to the guidelines target population.

STUDY DETAILS: Levy 2017

Applicability (relevance of the evidence to the Australian health care system)

The evidence is not applicable to the Australian healthcare context. There is insufficient data provided on the included studies to determine if the findings are applicable to the Australian health care system.

Additional comments

Authors conclusions:

Platelet transfusion is an important facet of haemostatic management. However, the high degree of variation in the methods and outcomes of the published studies evaluated in this review make it difficult to draw conclusions as to recommendations for platelet transfusion, as no clear consensus was identified. there is a clear and urgent need for additional studies to assess the appropriate dose and triggers for platelet transfusion in perioperative patients and to investigate the suitability of current platelet transfusion guidelines in perioperative patients.

List of relevant included studies:

STUDY DETAILS: Lilitis 2018

Citation

Arnold 2006, Fayed 2013, McGrath 2008, Premaratne 2001, Tanaka 214, Wu 2014, van Hout 2017

Cl, confidence interval; ITT, intention-to-treat; IQR, inter quartile range; MD, mean difference; NA, not applicable; NR, not reported; PP, perprotocol; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation; SR, systematic review

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

Lilitsis, E., Xenaki, S., Athanasakis, E., Papadakis, E., Syrogianni, P., Chalkiadakis, G., & Chrysos, E. (2018). Guiding management in severe trauma: Reviewing factors predicting outcome in vastly injured patients. Journal of

Emergencies, Trauma and Sh	nock, 11(2), 80-87. doi:h	nttp://dx.do	i.org/10.410	3/JETS.JETS-74-17	
Affiliation/Source of funds					
Funding: The study had no fi	nancial support or spe	onsorship.	The author	s declared no con	flicts of interest.
Author affiliations: University	Hospital of Crete, He	raklion, Gre	eece		
Study design	Level of evidence	I	ocation		Setting
SR (narrative)	1-111	1	Not reporte	ed	Trauma
Prognostic factor			Comparato	or	
Vital signs (temperature), Lao Coagulopathy	ctate and base deficit,	, i	NA		
Population characteristics					
Severely injured trauma patie	ents				
Length of follow-up			Outcomes	measured	
PubMed, Cochrane database support guiding manuals we published between 1994 and	e, and advanced traun re searched for Citation 2016.	na life I ons	Mortality		
INTERNAL VALIDITY					
Overall QUALITY of the syst	ematic review (desc	riptive)			
Rating (AMSTAR): Critically lo	W				
<i>Description:</i> More than one c critical flaw and should not b	ritical flaw with or wit e relied on to provide	thout non- an accura	critical wea te and com	knesses – the revi prehensive summ	ew has more than one nary of the available studies.
Limited detail on search strat	tegy, selection metho	ods, data ex	traction, ar	nd study inclusion	was provided.
Risk of bias of included studi	es: There was no risk o	of bias asse	essment co	mpleted by the re	view authors.
RESULTS:					
Outcome	Intervention	Compara	tor	Risk estimate	Statistical significance
No. patients	n/N (%)	n/N (%)		(95% CI)	<i>p</i> -value
(No. trials)	Mean ± SD	Mean ± S	D		Heterogeneity ^a
					l² (p-value)
Temperature (hypothermia)				
Mortality					Significant association
N = 701 491, Martin 2005	25.5%	3.0%		NR	p = NR

STUDY DETAILS: Lilitis 2018

N = NR, Balvers 2016 NR NR OR 2.82 (NR) Sir Lactate levels and base deficit	
Lactate levels and base deficit Mortality A 1 mmol/L increase in lactate levels was associated with a 17% increase in mortality risk. N = 1829, Cale 2016 A 1 mmol/L increase in base deficit was associated with an approximate 4% increase in mortality risk. N = 4472, Odom 2013 <2.5 mmol/L OR: 1 (NR) 2.5-39 mmol/L OR: 15 (NR) >4 mmol/L OR: 3.8 (NR) N = 493, Heinonen 2014 <2.5 mmol/L OR: 3.8 (NR)	Significant association
Mortality A1 mmol/L increase in lactate levels was associated with a Sit (3 studies) 17% increase in mortality risk. A1 mq/L increase in mortality risk. N = 1829, Gale 2016 A1 mq/L increase in mortality risk. p N = 4472, Odom 2013 <2.5 mmol/L OR: 1 (NR)	
(3 studies) 17% increase in mortality risk. P N = 1829, Gale 2016 A1 mq/L increase in base deficit was associated with an approximate 4% increase in mortality risk. P N = 4472, Odom 2013 <2.5 mmol/L OR: 15 (NR)	Significant association
N = 1829, Gale 2016 A 1 mq/L increase in base deficit was associated with an approximate 4% increase in mortality risk. p N = 4472, Odom 2013 <2.5 mmol/L OR: 1 (NR)	5
N = 4472, Odom 2013 <2.5 mmol/L OR: 1 (NR)	2 = NR
2.5-3.9 mmol/L OR: 1.5 (NR) >4 mmol/L OR: 3.8 (NR) N = 493, Heinonen 2014 <2.5 mmol/L was associated within 24hrs) was associated with a mortality rate of 22% ^b Prothrombin Mortality N = NR (1 study) MacLeod 2003 Abnormal PT was associated with 35% greater risk APTT Mortality N = NR (1 study) MacLeod 2003 Elevated APTT was associated with 326% greater risk EXTERNAL VALIDITY Elevated APTT was associated with 326% greater risk EXTERNAL VALIDITY Ferenalisability (relevance of the study population to the Guidelines target population) The evidence is not directly generalisable to the Australian population and it is hard to judge w apply. There is insufficient evidence presented in the review to determine generalisability of th Apdicability (relevance of the evidence to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicability of the evidence. Additional comments Authors conclusions: The main mortality-	o = NR
>4 mmol/L OR: 3.8 (NR) N = 493, Heinonen 2014 <2.5 mmol/L was associated with a mortality rate of 22% ^b High lactate (not normalised within 24hrs) was associated with a mortality rate of 54% ^b p Prothrombin Mortality N = NR (1 study) MacLeod 2003 Abnormal PT was associated with 35% greater risk APTT Mortality N = NR (1 study) MacLeod 2003 Elevated APTT was associated with 326% greater risk EXTERNAL VALIDITY Elevated APTT was associated with 326% greater risk EXTERNAL VALIDITY Generalisability (relevance of the study population to the Guidelines target population) The evidence is not directly generalisable to the Australian population and it is hard to judge w apply. There is insufficient evidence presented in the review to determine generalisability of th Applicability (relevance of the evidence to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicable to the Australian healthcare context. There is insufficient evidence review to determine applicability of the evidence. Additional comments Authors conclusions: The main mortality-predicting factors in trauma patients are lactate levels, temperature, and c should be identified and measured early by the treating physician. However, most studies were observational, and as such are of low qualit	
N = 493, Heinonen 2014 <2.5 mmol/L was associated with a mortality rate of 22% ^b p High lactate (not normalised within 24hrs) was associated with a mortality rate of 54% ^b p Prothrombin Mortality p N = NR (1 study) Abnormal PT was associated with 35% greater risk p APTT p Mortality N = NR (1 study) p MacLeod 2003 Abnormal PT was associated with 326% greater risk p EXTERNAL VALIDITY Elevated APTT was associated with 326% greater risk p Ceneralisability (relevance of the study population to the Cuidelines target population) The evidence is not directly generalisable to the Australian population and it is hard to judge w apply. There is insufficient evidence presented in the review to determine generalisability of th Applicability (relevance of the evidence to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicable to the Australian health care context. There is insufficient evidence review to determine applicability of the evidence. Additional comments Authors conclusions: The main mortality-predicting factors in trauma patients are lactate levels, temperature, and c should be identified and measured early by the treating physician. However, most studies were observational, and as such are of low quality and high inherent	
High lactate (not normalised within 24hrs) was associated with a mortality rate of 54% ^b Prothrombin Mortality Mortality N = NR (1 study) MacLeod 2003 Abnormal PT was associated with 35% greater risk APTT Mortality N = NR (1 study) MacLeod 2003 Elevated APTT was associated with 326% greater risk EXTERNAL VALIDITY Generalisability (relevance of the study population to the Guidelines target population) The evidence is not directly generalisable to the Australian population and it is hard to judge w apply. There is insufficient evidence presented in the review to determine generalisability of th Applicability (relevance of the evidence to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicable to the Australian health care system) The main mortality-predicting factors in trauma patients are lactate levels, temperature, and c should be identified and measured early by the treating physician. However, most studies were observational, and as such are of low quality and high inherent bias List of included studies: Gale 2016, Odam 2013, Heinonen 2014, Mizusima 2011, Callaway 2009, Bohnen 2016, Victorino 202 2014, Rau 2016, Olaussen 2014, Pandit 2014, Kristensen 2016, Singh 20	o = NR
Prothrombin Mortality N = NR (I study) MacLeod 2003 Abnormal PT was associated with 35% greater risk APTT Mortality P Mortality P N = NR (I study) MacLeod 2003 MacLeod 2003 Elevated APTT was associated with 326% greater risk EXTERNAL VALIDITY Generalisability (relevance of the study population to the Guidelines target population) The evidence is not directly generalisable to the Australian population and it is hard to judge w apply. There is insufficient evidence presented in the review to determine generalisability of th Applicability (relevance of the evidence to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicability of the evidence. Additional comments Authors conclusions: The main mortality-predicting factors in trauma patients are lactate levels, temperature, and c should be identified and measured early by the treating physician. However, most studies were observational, and as such are of low quality and high inherent bias List of included studies: Gale 2016, Odam 2013, Heinonen 2014, Mizusima 2011, Callaway 2009, Bohnen 2016, Victorino 202 2014, Rau 2016, Olaussen 2014, Pandit 2014, Kristensen 2016, Singh 2014, Luna 1987, Peng 1999, F 2005, Balvers 2016, Wang 2005, Andrews 2015, MacLeod 2003 <td></td>	
Mortality p N = NR (1 study) Abnormal PT was associated with 35% greater risk p APTT Mortality p Mortality N = NR (1 study) p MacLeod 2003 Elevated APTT was associated with 326% greater risk p EXTERNAL VALIDITY Generalisability (relevance of the study population to the Cuidelines target population) The evidence is not directly generalisable to the Australian population and it is hard to judge w apply. There is insufficient evidence presented in the review to determine generalisability of th Applicability (relevance of the evidence to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicable to the Australian health care system) The widence is not applicable to the Australian health care system) The evidence is not applicable to the Australian health care system) The widence is not applicable to the australian health care system) The main mortality-predicting factors in trauma patients are lactate levels, temperature, and c should be identified and measured early by the treating physician. However, most studies were observational, and as such are of low quality and high inherent bias List of included studies: Gale 2016, Odom 2013, Heinonen 2014, Mizusima 2011, Callaway 2009, Bohnen 2016, Victorino 202 2014, Rau 2016, Olaussen 2014, Pandit 2014, Kristensen 2016, Singh 20	
N = NR (I study) Abnormal PT was associated with 35% greater risk APTT Mortality p N = NR (I study) Belevated APTT was associated with 326% greater risk EXTERNAL VALIDITY Generalisability (relevance of the study population to the Guidelines target population) The evidence is not directly generalisable to the Australian population and it is hard to judge w apply. There is insufficient evidence presented in the review to determine generalisability of th Applicability (relevance of the evidence to the Australian health care system) The evidence is not applicable to the Australian healthcare context. There is insufficient eviden review to determine applicability of the evidence. Additional comments Authors conclusions: The main mortality-predicting factors in trauma patients are lactate levels, temperature, and c should be identified and measured early by the treating physician. However, most studies were observational, and as such are of low quality and high inherent bias List of included studies: Gale 2016, Odom 2013, Heinonen 2014, Mizusima 2011, Callaway 2009, Bohnen 2016, Victorino 202 2014, Rau 2016, Olaussen 2014, Pandit 2014, Kristensen 2016, Singh 2014, Luna 1987, Peng 1999, F 2005, Balvers 2016, Wang 2005, Andrews 2015, MacLeod 2003 APTT Aptimeter of the devine of the provement of the order the review review to Provement of the review reviewas review review review reviewas review rev	o = NR
MacLeod 2003 Abnormal PT was associated with 35% greater risk APTT Mortality p N = NR (I study) Elevated APTT was associated with 326% greater risk EXTERNAL VALIDITY Generalisability (relevance of the study population to the Guidelines target population) The evidence is not directly generalisable to the Australian population and it is hard to judge w apply. There is insufficient evidence presented in the review to determine generalisability of th Applicability (relevance of the evidence to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicability of the evidence. Additional comments Authors conclusions: The main mortality-predicting factors in trauma patients are lactate levels, temperature, and c should be identified and measured early by the treating physician. However, most studies were observational, and as such are of low quality and high inherent bias List of included studies: Gale 2016, Odom 2013, Heinonen 2014, Mizusima 2011, Callaway 2009, Bohnen 2016, Victorino 202 2014, Rau 2016, Olaussen 2014, Pandit 2014, Kristensen 2016, Singh 2014, Luna 1987, Peng 1999, F 2005, Balvers 2016, Wang 2005, Andrews 2015, MacLeod 200	
APTT Mortality p N = NR (1 study) Elevated APTT was associated with 326% greater risk EXTERNAL VALIDITY Ceneralisability (relevance of the study population to the Guidelines target population) The evidence is not directly generalisable to the Australian population and it is hard to judge w apply. There is insufficient evidence presented in the review to determine generalisability of th Applicability (relevance of the evidence to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicable to the Australian healthcare context. There is insufficient evidence review to determine applicability of the evidence. Additional comments Authors conclusions: The main mortality-predicting factors in trauma patients are lactate levels, temperature, and c should be identified and measured early by the treating physician. However, most studies were observational, and as such are of low quality and high inherent bias List of included studies: Gale 2016, Odom 2013, Heinonen 2014, Mizusima 2011, Callaway 2009, Bohnen 2016, Victorino 202 2014, Rau 2016, Olaussen 2014, Pandit 2014, Kristensen 2016, Singh 2014, Luna 1987, Peng 1999, F 2005, Balvers 2016, Wang 2005, Andrews 2015, MacLeod 2003	
Mortality p N = NR (1 study) Elevated APTT was associated with 326% greater risk EXTERNAL VALIDITY Generalisability (relevance of the study population to the Guidelines target population) The evidence is not directly generalisable to the Australian population and it is hard to judge w apply. There is insufficient evidence presented in the review to determine generalisability of th Applicability (relevance of the evidence to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicable to the Australian health care system) The avidence is not applicable to the Australian health care system) The avidence is not applicability of the evidence. Additional comments Authors conclusions: The main mortality-predicting factors in trauma patients are lactate levels, temperature, and c should be identified and measured early by the treating physician. However, most studies were observational, and as such are of low quality and high inherent bias List of included studies: Gale 2016, Odom 2013, Heinonen 2014, Mizusima 2011, Callaway 2009, Bohnen 2016, Victorino 202 2014, Rau 2016, Olaussen 2014, Pandit 2014, Kristensen 2016, Singh 2014, Luna 1987, Peng 1999, F 2005, Balvers 2016, Wang 2005, Andrews 2015, MacLeod 2003 APTT, activated partial thromboplastin time; CI, confidence interval; ITT, intention-to-treat;	
N = NR (I study) Elevated APTT was associated with 326% greater risk EXTERNAL VALIDITY Generalisability (relevance of the study population to the Guidelines target population) The evidence is not directly generalisable to the Australian population and it is hard to judge wapply. There is insufficient evidence presented in the review to determine generalisability of th Applicability (relevance of the evidence to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicable to the Australian healthcare context. There is insufficient evidence review to determine applicability of the evidence. Additional comments Authors conclusions: The main mortality-predicting factors in trauma patients are lactate levels, temperature, and c should be identified and measured early by the treating physician. However, most studies were observational, and as such are of low quality and high inherent bias List of included studies: Gale 2016, Odom 2013, Heinonen 2014, Mizusima 2011, Callaway 2009, Bohnen 2016, Victorino 202 2014, Rau 2016, Olaussen 2014, Pandit 2014, Kristensen 2016, Singh 2014, Luna 1987, Peng 1999, F 2005, Balvers 2016, Wang 2005, Andrews 2015, MacLeod 2003 APTT, activated partial thromboplastin time; Cl. confidence interval; ITT, intention-to-treat; MD, mean different entervals de D. adde with D. and ward be devided be included be inderval; D. and ware above the bot of thereval; D. and ward by D. andevaled bits D.<	o = NR
MacLeod 2003 Elevated APTT was associated with 326% greater risk EXTERNAL VALIDITY Generalisability (relevance of the study population to the Guidelines target population) The evidence is not directly generalisable to the Australian population and it is hard to judge wapply. There is insufficient evidence presented in the review to determine generalisability of th Applicability (relevance of the evidence to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicable to the Australian health care system) The evidence is not applicable to the Australian health care system) The applicability of the evidence. Additional comments Authors conclusions: The main mortality-predicting factors in trauma patients are lactate levels, temperature, and c should be identified and measured early by the treating physician. However, most studies were observational, and as such are of low quality and high inherent bias List of included studies: Gale 2016, Odom 2013, Heinonen 2014, Mizusima 2011, Callaway 2009, Bohnen 2016, Victorino 202 2014, Rau 2016, Olaussen 2014, Pandit 2014, Kristensen 2016, Singh 2014, Luna 1987, Peng 1999, F 2005, Balvers 2016, Wang 2005, Andrews 2015, MacLeod 2003 APTT, activated partial thromboplastin time; Cl. confidence interval; ITT, intention-to-treat; MD, mean differen entervate do D. adde target D. and the partil	
EXTERNAL VALIDITY Generalisability (relevance of the study population to the Guidelines target population) The evidence is not directly generalisable to the Australian population and it is hard to judge w apply. There is insufficient evidence presented in the review to determine generalisability of th Applicability (relevance of the evidence to the Australian health care system) The evidence is not applicable to the Australian healthcare context. There is insufficient eviden review to determine applicability of the evidence. Additional comments Authors conclusions: The main mortality-predicting factors in trauma patients are lactate levels, temperature, and c should be identified and measured early by the treating physician. However, most studies were observational, and as such are of low quality and high inherent bias List of included studies: Gale 2016, Odom 2013, Heinonen 2014, Mizusima 2011, Callaway 2009, Bohnen 2016, Victorino 20 2014, Rau 2016, Olaussen 2014, Pandit 2014, Kristensen 2016, Singh 2014, Luna 1987, Peng 1999, F 2005, Balvers 2016, Wang 2005, Andrews 2015, MacLeod 2003 APTT, activated partial thromboplastin time; CI, confidence interval; ITT, intention-to-treat; MD, mean differen	
Generalisability (relevance of the study population to the Guidelines target population) The evidence is not directly generalisable to the Australian population and it is hard to judge w apply. There is insufficient evidence presented in the review to determine generalisability of th Applicability (relevance of the evidence to the Australian health care system) The evidence is not applicable to the Australian health care context. There is insufficient eviden review to determine applicability of the evidence. Additional comments Authors conclusions: The main mortality-predicting factors in trauma patients are lactate levels, temperature, and c should be identified and measured early by the treating physician. However, most studies were observational, and as such are of low quality and high inherent bias List of included studies: Gale 2016, Odom 2013, Heinonen 2014, Mizusima 2011, Callaway 2009, Bohnen 2016, Victorino 202 2014, Rau 2016, Olaussen 2014, Pandit 2014, Kristensen 2016, Singh 2014, Luna 1987, Peng 1999, F 2005, Balvers 2016, Wang 2005, Andrews 2015, MacLeod 2003 APTT, activated partial thromboplastin time; CI, confidence interval; ITT, intention-to-treat; MD, mean different	
The evidence is not directly generalisable to the Australian population and it is hard to judge wapply. There is insufficient evidence presented in the review to determine generalisability of th Applicability (relevance of the evidence to the Australian health care system) The evidence is not applicable to the Australian healthcare context. There is insufficient eviden review to determine applicability of the evidence. Additional comments <i>Authors conclusions:</i> The main mortality-predicting factors in trauma patients are lactate levels, temperature, and c should be identified and measured early by the treating physician. However, most studies were observational, and as such are of low quality and high inherent bias <i>List of included studies:</i> Gale 2016, Odom 2013, Heinonen 2014, Mizusima 2011, Callaway 2009, Bohnen 2016, Victorino 20 2014, Rau 2016, Olaussen 2014, Pandit 2014, Kristensen 2016, Singh 2014, Luna 1987, Peng 1999, F 2005, Balvers 2016, Wang 2005, Andrews 2015, MacLeod 2003 APTT, activated partial thromboplastin time; CI, confidence interval; ITT, intention-to-treat; MD, mean differen	
Applicability (relevance of the evidence to the Australian health care system) The evidence is not applicable to the Australian healthcare context. There is insufficient eviden review to determine applicability of the evidence. Additional comments Authors conclusions: The main mortality-predicting factors in trauma patients are lactate levels, temperature, and c should be identified and measured early by the treating physician. However, most studies were observational, and as such are of low quality and high inherent bias List of included studies: Gale 2016, Odom 2013, Heinonen 2014, Mizusima 2011, Callaway 2009, Bohnen 2016, Victorino 202 2014, Rau 2016, Olaussen 2014, Pandit 2014, Kristensen 2016, Singh 2014, Luna 1987, Peng 1999, F 2005, Balvers 2016, Wang 2005, Andrews 2015, MacLeod 2003 APTT, activated partial thromboplastin time; CI, confidence interval; ITT, intention-to-treat; MD, mean differenter the partial thromboplastin time; CI, confidence interval; ITT, intention-to-treat; MD, mean differenter	whether it is sensible to the evidence
The evidence is not applicable to the Australian healthcare context. There is insufficient evidence review to determine applicability of the evidence. Additional comments Authors conclusions: The main mortality-predicting factors in trauma patients are lactate levels, temperature, and c should be identified and measured early by the treating physician. However, most studies were observational, and as such are of low quality and high inherent bias List of included studies: Gale 2016, Odom 2013, Heinonen 2014, Mizusima 2011, Callaway 2009, Bohnen 2016, Victorino 202 2014, Rau 2016, Olaussen 2014, Pandit 2014, Kristensen 2016, Singh 2014, Luna 1987, Peng 1999, F 2005, Balvers 2016, Wang 2005, Andrews 2015, MacLeod 2003 APTT, activated partial thromboplastin time; CI, confidence interval; ITT, intention-to-treat; MD, mean differen	
Additional comments Authors conclusions: The main mortality-predicting factors in trauma patients are lactate levels, temperature, and c should be identified and measured early by the treating physician. However, most studies were observational, and as such are of low quality and high inherent bias <i>List of included studies:</i> Gale 2016, Odom 2013, Heinonen 2014, Mizusima 2011, Callaway 2009, Bohnen 2016, Victorino 20 2014, Rau 2016, Olaussen 2014, Pandit 2014, Kristensen 2016, Singh 2014, Luna 1987, Peng 1999, F 2005, Balvers 2016, Wang 2005, Andrews 2015, MacLeod 2003 APTT, activated partial thromboplastin time; CI, confidence interval; ITT, intention-to-treat; MD, mean differen	nce presented in the
Authors conclusions: The main mortality-predicting factors in trauma patients are lactate levels, temperature, and c should be identified and measured early by the treating physician. However, most studies were observational, and as such are of low quality and high inherent bias <i>List of included studies:</i> Gale 2016, Odom 2013, Heinonen 2014, Mizusima 2011, Callaway 2009, Bohnen 2016, Victorino 20 2014, Rau 2016, Olaussen 2014, Pandit 2014, Kristensen 2016, Singh 2014, Luna 1987, Peng 1999, F 2005, Balvers 2016, Wang 2005, Andrews 2015, MacLeod 2003 APTT, activated partial thromboplastin time; CI, confidence interval; ITT, intention-to-treat; MD, mean differen	
The main mortality-predicting factors in trauma patients are lactate levels, temperature, and c should be identified and measured early by the treating physician. However, most studies were observational, and as such are of low quality and high inherent bias <i>List of included studies:</i> Gale 2016, Odom 2013, Heinonen 2014, Mizusima 2011, Callaway 2009, Bohnen 2016, Victorino 20 2014, Rau 2016, Olaussen 2014, Pandit 2014, Kristensen 2016, Singh 2014, Luna 1987, Peng 1999, F 2005, Balvers 2016, Wang 2005, Andrews 2015, MacLeod 2003 APTT, activated partial thromboplastin time; CI, confidence interval; ITT, intention-to-treat; MD, mean differen	
List of included studies: Gale 2016, Odom 2013, Heinonen 2014, Mizusima 2011, Callaway 2009, Bohnen 2016, Victorino 20 2014, Rau 2016, Olaussen 2014, Pandit 2014, Kristensen 2016, Singh 2014, Luna 1987, Peng 1999, F 2005, Balvers 2016, Wang 2005, Andrews 2015, MacLeod 2003 APTT, activated partial thromboplastin time; CI, confidence interval; ITT, intention-to-treat; MD, mean differen	coagulopathy, and these are retrospective or
Gale 2016, Odom 2013, Heinonen 2014, Mizusima 2011, Callaway 2009, Bohnen 2016, Victorino 20 2014, Rau 2016, Olaussen 2014, Pandit 2014, Kristensen 2016, Singh 2014, Luna 1987, Peng 1999, F 2005, Balvers 2016, Wang 2005, Andrews 2015, MacLeod 2003 APTT, activated partial thromboplastin time; CI, confidence interval; ITT, intention-to-treat; MD, mean differen	
2014, Rau 2016, Olaussen 2014, Pandit 2014, Kristensen 2016, Singh 2014, Luna 1987, Peng 1999, I 2005, Balvers 2016, Wang 2005, Andrews 2015, MacLeod 2003 APTT, activated partial thromboplastin time; CI, confidence interval; ITT, intention-to-treat; MD, mean differen	2003, Strnad 2015, Sloan
APTT, activated partial thromboplastin time; CI, confidence interval; ITT, intention-to-treat; MD, mean differen	, Perlman 2016, Martin
deviation; SR, systematic review	nce; NA, not applicable; NR, R, relative risk; SD, standard؛
a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no signification and I ² < 25%; (ii) mild heterogeneity if I ² < 25%; moderate heterogeneity if I ² between 25–50%; substantial here proverted to mortality rate.	icant heterogeneity if P _{het} > 0. heterogeneity I ² > 50%.
c. defined as patients who did not achieve normal lactate within 48 hours of admission	

STUDY DETAILS: Tran 2018

Citation

Tran, A., Matar, M., Lampron, J., Steyerberg, E., Taljaard, M., & Vaillancourt, C. (2018). Early identification of patients requiring massive transfusion, embolization or hemostatic surgery for traumatic hemorrhage: A systematic review and meta-analysis. *Journal of Trauma and Acute Care Surgery*, *84*(3), 505-516. doi:http://dx.doi.org/10.1097/TA.00000000001760

STUDY DETAILS: Tran 2018

Tran, A., Matar, M., Steyerberg, E. W., Lampron, J., Taljaard, M., & Vaillancourt, C. (2017). Early identification of patients requiring massive transfusion, embolization, or hemostatic surgery for traumatic hemorrhage: a systematic review protocol. Systematic reviews, 6(1), 80. doi:10.1186/s13643-017-0480-0

Affiliation/Source of funds			
The authors declared no cor	flicts of interest.		
Study design	Level of evidence	Location	Setting
SR and MA of prospective and retrospective observational studies	1-111	USA, Europe, Asia, Australia	Trauma: Civilian 78 (92.9%) Military 6 (7.1%)
Prognostic Factor/s		Comparator	
Systolic Blood Pressure (SBP Heart Rate (HR) Haemoglobin Lactate International normalised rat	io (INR)	NA	
Population characteristics			
Adult patients with traumati isolated traumatic limb amp	c torso injuries. Studies of pati- utation, isolated long bone fra	ents with isolated head injury v cture, or burn injury were exclu	without torso involvement, uded.
Length of follow-up		Outcomes measured	
Medline and embase was se 1946 and 31 September 2016. databases, and conference a Association of Canada, the A Surgery of Trauma, the Easte Surgery of Trauma and the T Acute Care Surgery annual r 2014 to 2016. ClinicalTrials.go in-progress studies.	arched between 1 January Central Cochrane Library Ibstracts from Trauma merican Association for the ern Association for the Trauma, Critical Care and neetings were searched from v registry was searched for	Haemostatic surgical interve embolisation, or massive tran hospital admission – which s clinically significant bleeding	ntion, angiographic nsfusion within 24 hours of erved as a surrogate for J.
Overall OUALITY of the syst	ematic review (descriptive)		
Rating (AMSTAR): Low Description: One critical flaw provide an accurate and con	with or without non-critical w nprehensive summary of the a	eaknesses – the review has a c vailable studies that address tl	critical flaw and may not he question of interest.
Risk of bias of included stud high. Not all models were de evaluation of a single predict and predictor measurement how the bias is likely to impa	ies: The overall risk of bias for ir signed for the purpose of prec tor. Study population was well was poorly defined overall. Ha act the prognostic factor.	ncluded studies was judged by liction, with confounding adjust defined in all studies. Justificat Indling of data was frequently	the review authors to be stment used in the tion for predictor selection not reported. It is unclear
RESULTS:			
Outcome No. patients (No. trials)	SBP (log) odds ratio (SE)	Risk estimate Odds ratio (95% CI)	Statistical significance p-value Heterogeneity ^a I² (p-value)
Systolic Blood Pressure			
Significant bleeding N = NR (5 studies) Callcut 2013 McLaughlin 2008	0.956 (0.142)	3.95 (2.18, 7.15) 2.60 (1.97, 3.44) 3.53 (1.85, 6.74)	Favours hypotension p < 0.00001 Substantial heterogeneity l ² = 83% (p = 0.0001)
Nunez 2009 Prichayudh 2014	2.565 (0.329) 1.552 (0.494)	13.00 (6.82, 24.77) 4.72 (1.79, 12.43)	u

STUDY DETAILS: Tran	2018		
Vandromme 2011	0.732 (0.253)	2.08 (1.27, 3.41)	
Heart Rate	'		
Significant bleeding		2.57 (1.81, 3.67)	Favours tachycardia
N = NR (7 studies)			p < 0.00001
Brasel 2007	0.788 (0.193)	2.20 (1.51, 3.21)	Substantial heterogeneity
Callcut 2013	0.405 (0.117)	1.50 (1.19, 1.89)	12 = 77% (p = 0.0002)
Kaiser 2009	0.47 (0.236)	1.60 (1.01, 2.54)	
McLaughlin 2008	1.58 (0.32)	4.85 (2.59, 9.09)	
Nunez 2009	1.361 (0.302)	3.90 (2.16, 7.05)	
Prichayudh 2014	1.082 (0.326)	2.95 (1.56, 5.59)	
Vandromme 2011	1.267 (0.239)	3.55 (2.22, 5.67)	
Haemoglobin	'	'	· · · · · ·
Significant bleeding		3.78 (1.97, 7.26)	Favours low haemoglobin
N = NR (3 studies)			p < 0.0001
Callcut 2013	0.875 (1.41)	2.40 (1.82, 3.16)	Substantial heterogeneity
Paulus 2014	0.94 (0.122)	2.56 (2.02, 3.25)	l² = 92% (p < 0.00001)
Vandromme 2011	2.315 (0.266)	10.12 (6.01, 17.05)	
Lactate			
Significant bleeding		4.10 (2.50, 6.74)	Favours lactic acidosis
N = NR (2 studies)			p < 0.0001
Vandromme 2010	1.649 (0.201)	5.20 (3.51, 7.71)	Substantial heterogeneity
Vandromme 2011	1.141 (0.239)	3.13 (1.96, 5.00)	l² = 62% (p < 0.10)
INR			· · · · ·
Significant bleeding		4.16 (2.57, 6.73)	Favours coagulopathy
N = NR (2 studies)			p < 0.00001
Callcut 2013	1.224(0.161)	3.40 (2.48, 4.66)	Substantial heterogeneity
Vandromme 2011	1.725 (0.274)	5.61 (2.57, 6.73)	l² = 60% (p < 0.11)
EXTERNAL VALIDITY			
Generalisability (relevan	ce of the study population	on to the Guidelines target pop	oulation)

The evidence is directly generalisable to the Australian population with some caveats. The majority (92.9%) of studies were conducted in the civilian population. Excluding specified studies ensures critical bleeding is associated to volume lost, not location of the bleed. Inconsistencies in thresholds used between studies may lower the generalisability to the guideline's population.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats. Six (7.1%) included studies were conducted in Australia or New Zealand. The majority (65.5%) of studies were conducted in the USA. All studies that reported participating centres were Level I trauma, major or university hospitals.

Additional comments

Authors conclusions:

The author concluded there are no high quality, evidence-based prediction models for traumatic haemorrhage. Although the results for each outcome are highly significant, the results should be interpreted with caution due to the substantial heterogeneity between studies.

Included relevant studies:

Brasel 2007, Callcut 2013, Kaiser 2009, McLaughlin 2008 (Kauvar 2006), Nunez 2009, Paulus 2014, Prichayudh 2014, Vandromme 2010, Vandromme 2011

Cl, confidence interval; INR, international normalised ratio; ITT, intention-to-treat; MD, mean difference; not applicable, not applicable; NR, not reported; PP, per-protocol; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation; SE, standard error; SR, systematic review

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: M	amyszek 2	019				
Citation						
Kamyszek 2019 Kamysz transfusion in the pedia Acute Care Surgery 86(Affiliation/Source of	zek, R, W., Lera atric population 4): 744-754. do f unds	as, H, J., Reed n: A systemati bi: 10.1097/TA	l, C., Ray, C. M ic review and s A.000000000000	., Nag, U summary 002188	, P., Poisson, J, L. & Trac of best-evidence practi	y, E. T. 2019. Massive ce strategies. <i>Journal of Trauma</i>
Authors declared the	y received no	funding (p7	53)			
Author affiliations: Th (C.M.R.), and Patholog	ne School of № gy (J.L.P.), Dul	ledicine (R.W ke University	/.K.) and Depa r, Durham, No	artment orth Caro	ts of Surgery (H.J.L., C.F plina.	R., U.P.N., E.T.T.), Pediatrics
The authors declared	I no conflicts o	of interest.				
Study design	Leve	el of evidenc	e	Locatio	on	Setting
Observational studies	9 -			NR		Paediatric trauma centre, hospital, military
Intervention				Compa	arator	
Massive blood transfu	sion			NA		
Pediatric population re studies)	equiring massiv	e blood trans	fusion (massiv	e blood	transfusion definition di	fered between included
				Martal		
e.g. Citations publish December 2017	ed between J	anuary 1946	and	hours to	o first FFP, hours to first	PLT
INTERNAL VALIDI	ТҮ					
Overall risk of bias (descriptive)					
Description: More than one critica should not be relied of	al flaw with or on to provide	without nor an accurate	n-critical weal and compret	knesses hensive	– the review has more summary of the availa	e than one critical flaw and ble studies.
e.g., the overall risk of with patient selection bias due to incomple favour the intervention	f bias for inclu n bias due to s te reporting o on.	ided studies significant di of outcome c	was judged k ifferences in k lata, with no	by the re baseline explana	eview authors to be hig characteristics of com tions given for missing	gh. There were concerns nparator groups and attrition g data. The bias is likely to
RESULTS:	-					
Outcome No. patients (No. trials)	[intervention/N (%) Mean ± SD	on] [a n N	comparator] I/N (%) 1ean ± SD		Risk estimate (95% CI)	Statistical significance p-value Heterogeneityª I² (p-value)
Post MTP (Massive	transfusion p	protocol) imp	olementatio	n vs Bei	fore MTP implemento	Ition
Mortality N = NR (3 studies)	NR	N	IR		NR	p = 0.729 p > 0.05 p = 0.10
Hwu 2016	47.1%	5	3.8%			
Chidester 2012	45%	4	-5%			
Hendrickson 2012	38%	2	3%			
Hours to first blood product N = NR (1 study) Hwu 2016	Mean = 0.9	N	1ean = 0.8		NR	p= 0.688
Hours to first RBC	Mean = 1.4	N	1ean = 0.8		NR	p= 0.180
						·

STUDY DETAILS: Kamyszek 2019

STODI DETAILS: K	anyszek zors			
N = NR (1 study)				
Hwu 2016				
Hours to first FFP			NR	
N = NR (2 studies)				
Hwu 2016	Mean = 1	Mean = 2.7		p = 0.005
Hendrickson 2012	Mean = 0.8	Mean = 3.3		p < 0.001
Hours to first PLT	Mean = 4.4	Mean = 6.0	NR	p = 0.421
N = NR (1 study)				
Hwu 2016				

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian healthcare context

Additional comments

Authors conclusions:

This systematic review provides highlights of current practice strategies in pediatric MT. Our institutional experience is consistent with the broader national and international experience in regards tomortality and protocol adherence. Centers hold the potential to improve with respect to protocol adherence and systematic use of hemostatic adjuncts in this pediatric population. This review highlights the scattered, heterogeneous quality of studies in this field. Ultimately, prospective, multi-institutional studies would be helpful to more formally and systematically assess MTPs in this unique and diverse patient population to target optimal protocols and improve patient outcomes.

List of relevant included studies:

Shroyer 2017, Acker 2016, Horst 2016, Hwu 2016, Navarantnam 2016, Smith 2016, Sparkle 2016, Edwards 2015, Hwu 2015, Neff 2015, Eckert 2014, Kua 2014, Lee 2014, Livingston 2014, Agrawal 2013, Diab 2013, Huang 2013, Nosanov 2013, Arul 2012, Chidester 2012, Craig 2012, Hendrickson 2012, Dehmer 2010, Dressler 2010, Downes 2001, Buntain 1999, Brown 1990, Cote 1985, Schroeder 1969

Cl, confidence interval; ITT, intention-to-treat; MD, mean difference; PP, per-protocol; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet > 0.1 and I2 < 25%; (ii) mild heterogeneity if I2 < 25%; moderate heterogeneity if I2 between 25–50%; substantial heterogeneity I2 > 50%.

STUDY DETAILS: Shih 2019

Citation

Shih, AW., Al Khan, S., Wang, AY., Dawe, P., Young, PY., Greene, A., Hudoba, M. & Vu, E. 2019. Systematic reviews of scores and predictors to trigger activation of massive transfusion protocols. *Journal of Trauma and Acute Care Surgery*, 87(3). 717-729. doi: 10.1097/TA.0000000002372

Affiliation/Source of funds

Details on funding not provided.

Author affiliations: the Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (A.W.S., A.Y.W., M.H.)., Vancouver Coastal Health Authority Vancouver, British Columbia, Canada (A.W.S., P.H., P.Y.Y., M.H., E.V.)., Blood Banks Services, Directorate General of Specialized Medical Care Ministry of Health, Oman (S.A.).,

Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada (P.W.)., Critical Care Transport Program, British Columbia Emergency Health Services, Vancouver, British Columbia, Canada (A.G., E.V.)., Department of Emergency Medicine, University of British Columbia, Vancouver, British Columbia, Canada (E.V.). & Department of Critical Care Medicine University of British Columbia, Vancouver, British Columbia, Canada (E.V.).

Conflict of interest: A.W.S. is a c	onsultant for Octapharma C	anada. The other authors declared	no conflicts of interest.
Study design	Level of evidence	Location	Setting

	A	
SR of observational studies I-III	Not reported	Trauma

STUDY DETAILS: Shih 2019)						
Prognostic Factors			Comparator				
Temperature, INR, Haemoglobin, ionized calcium, Fibrinogen			NA				
Population characteristics							
Not reported							
Length of follow-up			Outcomes measured				
Not reported			Transfusion volume				
INTERNAL VALIDITY							
Overall QUALITY of the system	matic review (des	scriptive)					
Rating (AMSTAR): Critically low	1						
Description: More than one cri	tical flaw with or v	vithout non-	-critical weaknesses – the revie	w has more than one			
Disk of bigs of included studior		De an accure	ate and comprehensive summa	included studies. It was			
deemed that the majority of ca	ase-control studie	s defined ca	ses and had appropriate repre	sentativeness of cases. but			
some did not always provide d	etail on different o	characteristi	cs of controls or what the defir	ition of controls were.			
Some case-control studies also	o did not provide c	letails for pa	tients that were lost to follow-	up.			
Cohort studies included were	of good methodol	ogical quali	ty based on assessment using t	he Newcastle-Ottawa			
Scale.							
RESULTS:	1	1					
Outcome	[intervention]	[comparat	tor] Risk estimate (95% CI)	Statistical significance			
No. patients	n/N (%)	n/N (%)		<i>p</i> -value			
	Mean 1 SD	Mean 1 SL					
Temperature (<35.5°C) versus	Temperature (>3	(5.5°C)					
PBC transfusion volume			OP 40 (16 101)	NP			
$(\geq 10 \text{ units in 6 hrs})$							
N = 170 (1 CC)							
Callcut 2011							
INR (>1.5) versus INR (<1.5)							
RBC transfusion volume (≥ 10 units in 6 hrs)	NR	NR	OR 11.3 (2.7, 47.3)	NR			
N = 170 (1 Study)							
Callcut 2011							
RBC transfusion volume	NR	NR	NR	NR			
(≥ 10 units in 24 hrs)							
N = 1803 (2 Studies)							
Callcut 2013 (N = 1245)			OR 2.1 (1.4, 3.1)				
Schreiber 2007 (N - 556)	us Haomoalohin	(> 11 a/dl)	OR 5.9 (5.5, 10.2)				
Haemoglobin (< 11 g/aL) versi	us Haemogiobin (> 11 g/aL)					
RBC transfusion volume	NR	NR	NR	NR			
N = 2349 (5 studies)							
Callcut 2011 (N = 170)							
Callcut 2013 (N = 1245)			OP18(13, 25)				
Leemann 2010 (N = 53)			OP 18 18 (2 73 125 00)				
Schöchl 2011 (N = 323)			ROC AUC 0.87 (0.83, 0.91)				
Schreiber 2007 (N = 558)			OR 7.7 (5.0, 11.9)				
Ionized Calcium (<1 mmol/L)	versus Ionized Co	ılcium (>1 m	nmol/L)				
RBC transfusion volume	NR	NR	NR	NR			
(≥ 5 units in 24 hrs)							
N = 591 (1 Study)							

STUDY DETAILS: Shih 2019	Ð			
Magnotti 2011			OR 2.294 (1.053, 4.996)	
Fibrinogen (≤190 mg/dL) vers	sus Fibrinogen (>1	190 mg/dL)	1	
RBC transfusion volume (≥ 10 units in 24 hrs)	NR	NR	NR	NR
N = 625 (1 Study)				
Nakamura 2017			OR 0.931 (0.898, 0.963)	
EXTERNAL VALIDITY				
Generalisability (relevance o	f the study popul	ation to the Gui	delines target population)	
The evidence is directly gener	alisable to the Aus	tralian populati	on with some caveats.	
Applicability (relevance of th	e evidence to the	e Australian hea	lth care system)	
The evidence is directly applic the applicability, the authors of	able to the Austra did not mention th	lian healthcare one location wher	context with few caveats. It is the studies were performed	difficult to determine d.
Additional comments				
Authors conclusions:				
The use of scores or tools to p judgment. Future studies for t	redict MTP need to riggering non-tra	o be individualiz uma MTP activa	ed to hospital resources and tions are needed.	skill set to aid clinical
Included studies				
Brooke 2016, Callcut 2011, Callo 2017, Schochl 2011, Schreiber 2	cut 2013, Charbit 20 007	013, David 2017, I	(young 2016, Leemann 2010,	Magnotti 2011, Nakamura
Cl, confidence interval; INR, Interna odds ratio; pRBC, packed red bl SR, systematic review	tional Normalised Ra ood cells; ROC AUC, I	tio; MTP, massive t received operating	ransfusion protocol; NA, not app characteristic area under the cu	licable; NR, not reported; OR, ırve; SD, standard deviation;
a. Only applicable to Level I studies and I ² < 25%; (ii) mild heterogen	with formal meta-an eity if I² < 25%; moder	alysis. Heterogene ate heterogeneity	ity defined as follows: (i) no signi if l² between 25–50%; substantia	ficant heterogeneity if P _{het} > 0.1 I heterogeneity I ² > 50%.
STUDY DETAILS: Vasudev	a 2021			
Citation				
Vasudeva M, Mathew JK, Groc	mbridge C, Tee JV	V, Johnny CS, et	al. Hypocalcemia in trauma	patients: a systematic

review. Journal of Trauma and Acute Care Surgery. 2021; 90(2): 396-402

Affiliation/Source of funds

The authors declared no conflicts of interest. The source of funding was not reported.

Author affiliations: National Trauma Research Institute, Alfred Health, Melbourne, Australia; Emergency and Trauma Centre and Trauma Service, The Alfred Hospital, Melbourne Australia; Central Clinical School, Monash University, Victoria, Australia; Software & Innovation Lab, Deakin University, Victoria Australia; Department of Neurosurgery, The Alfred Hospital, Melbourne, Australia.

Level of evidence	Location	Setting			
-	Cherry 2006: US	Trauma centres			
	Magnotti 2011: US				
	Vasudeva 2020: Australia				
	Comparator				
mmol/L)	NA				
Population characteristics					
vith an admission ionized calc	ium measurement before bloc	od transfusion			
	Outcomes measured				
from data inception to 3 May	Mortality				
	Transfusion requirements				
5					
INTERNAL VALIDITY					
Overall QUALITY of the systematic review (descriptive)					
W					
	Level of evidence I-III mmol/L) vith an admission ionized calc from data inception to 3 May matic review (descriptive) ww	Level of evidence Location I-III Cherry 2006: US Magnotti 2011: US Vasudeva 2020: Australia Comparator Comparator mmol/L) NA vith an admission ionized calcium measurement before block from data inception to 3 May Mortality rematic review (descriptive) ww			

STUDY DETAILS: Vasudeva 2021

Description: More than one critical flaw with or without non-critical weaknesses – the review has more than one critical flaw and should not be relied on to provide an accurate and comprehensive summary of the available studies. *Risk of bias of included studies:* The overall risk of bias was moderate. The authors noted that Vasudeva 2020 was limited by small sample size, and the systematic review was subject to publication bias.

RESULTS:

Outcome No. patients (No. trials)	Hypocalcaemia n/N (%) Mean ± SD	Normocalcemia n/N (%) Mean ± SD	Risk estimate (95% CI)	Statistical significance p-value Heterogeneity ^a l ² (p-value)
Mortality				
N = 1213 (3 studies)				
Cherry 2006	24/91 (26.4)	48/305 (15.7)	OR 1.92 (NR)	p <0.05
Magnotti 2011	NR/332 (15.5)	NR/259 (8.7)	NR	p = 0.036
Vasudeva 2020	29/113 (25.6)	17/113 (15.0)	NR	p = 0.047
Transfusion				
N = 817 (2 studies)				
Magnotti 2011				
≥5 U	NR/332 (17.1)	NR/259 (7.1)	NR	p = 0.005
≥10 U	NR/332 (8.2)	NR/259 (2.2)	NR	p = 0.017
Vasudeva 2020	75/113 (62.5)	45/113 (37.5)	NR	p <0.001

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian healthcare context. Vasudeva 2020 was conducted in Australia.

Additional comments

Authors conclusions:

moderate quality evidence on the association between transfusion-independent hypocalcaemia and mortality, blood transfusion needs, and coagulopathy. However, further prospective trials are needed to corroborate this relationship and identify possible therapeutic measures that might mitigate the aforementioned outcomes.

Included studies:

Cherry 2006, Magnotti 2011, Vasudeva 2020

Cl, confidence interval; MD, mean difference; NA, not applicable; NR, not reported; OR, odds ratio; SD, standard deviation; SR, systematic review; U, unit; US, United States

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

Prospective cohort studies

STUDY DETAILS: Magnotti 2011

Citation

Magnotti LJ, Bradburn EH, Webb DL, Berry SD, Fischer PE, Zarzaur BL, et al. Admission ionized calcium levels predict the need for multiple transfusions: A prospective study of 591 critically ill trauma patient. Journal of Trauma - Injury, Infection and Critical Care. 2011;70(2):391-7. doi: 0.1097/TA.0b013e31820b5d98

Affiliation/Source of funds

None reported							
Study design Level of evidence		Location	Setting				
Prospective cohort study	III	Tennessee, USA	Regional trauma centre				
Prognostic factor		Comparator	Comparator				
Ionized Calcium (iCa) levels		NA	NA				

Population characteristics

Civilians admitted to the trauma centre after a trauma activation and have not received any blood product transfusion before arrival at the trauma centre

Length of follow-up	Outcomes measured
Study conducted over 9 months. Follow-up for all	Mortality,
outcomes was 24h	Multiple transfusions (>4 units packed RBCs in 24 hrs),
	Massive transfusion (<9 units packed red blood cells in 24
	hrs)

INTERNAL VALIDITY

Overall risk of bias (descriptive)

Rating: Serious

Description: The study has plausible bias that seriously weakens confidence in the results. Blinding of prognostic factor or outcomes (mortality, multiple transfusions or massive transfusions) in the study were not reported and the study did not report on dropouts or loss to follow up.

RESULIS						
Outcome	Prognostic factor (%)	<i>p</i> -value				
Mortality	Hi-Cal (iCa ≥ 1.00): NR/259 (8.7)	0.036	0.036			
N = 591	Lo-Cal (iCa < 1.00): NR/332 (15.5)					
Multiple transfusions	Hi-Cal: NR/259 (7.1)	0.005	0.005			
N = 591	Lo-Cal: NR/332 (17.1)					
Massive transfusion	Hi-Cal: NR/259 (2.2)	0.017	0.017			
N = 591	Lo-Cal: NR/332 (8.2)					
Outcome	Variable	Odds ratio	95% CI			
Multiple transfusions	iCa < 1.00	2.29	1.05- 5.00			

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is not directly generalisable to the Australian population, and it is hard to judge whether it is sensible to apply. There is very little information (age only) given on the characteristics of the included population.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is not applicable to the Australian healthcare context. A single trauma care centre in USA likely has significant differences compared to the Australian health care system.

Additional comments

Authors conclusions:

It should be noted that admission iCa was similar to both admissions BE and lactate in this regard. Thus, iCa may serve as an adjunct to these values in the initial phase of resuscitation

Cl, confidence interval; dL; decilitre; h, hour; Hb, haemoglobin; HR, heart rate; iCa, ionized calcium; mEq, milliequivalent; mmol; millimoles; NA, not applicable; NPV, negative predictive value; NR, not reported; PPV; positive predictive value; SBP, systolic blood pressure; SI, shock index

STUDY DETAILS: Ja	avali 2017					
Citation						
Javali, R. H., Ravindra, the Initial Assessment Care Med, 21(11), 719-72	P., Patil, A., Srinivasara t of Arterial Lactate an 25. doi:10.4103/ijccm.IJ	angan, M., Munc Id Base Deficit a CCM_218_17	lada, H., <i>I</i> Is Predict	Adarsh, S. B., & Nisarg, tors of Outcome in Tra	S. (2017). A Clinical Study on uma Patients. Indian J Crit	
Affiliation/Source of	funds					
The study received no Author affiliations: PF Karnataka, India; HM	o financial support or s Raffiliated with Depart affiliated with Depart	sponsorship. The tment of Emerg ment of Emerge	e authors gency Me ency Mec	s declared no conflicts edicine, Kasturba Medi licine, St. John's Medic	of interest. cal College, Manipal, al College and Hospital,	
Bengaluru, Karnataka					Catting	
Study design		ence	Locatio	on	Setting	
Prospective conort st	udy		Compa	arator	Tertiary care centre ED	
Lactate, Base deficit, k haemoglobin, shock i	blood pressure, heart i ndex	rate,	NA			
Population characte	ristics					
100 trauma patients (injury to abdomen or	penetrating trauma to chest) at risk of haem	o chest, abdome odynamic com	en, or pel promise.	vis, pelvis fracture, sha	ft of femur fracture, blunt	
Length of follow-up			Outco	mes measured		
Study conducted ove outcomes was 24h	r 18 months. Follow-uj	p for all	Mortali Blood t	ity at 24h transfusion received at	24h	
INTERNAL VALIDIT	ſY					
Overall risk of bias (c	lescriptive)					
Rating: Serious						
Description: The study from a consecutive co only 92 were included	y has plausible bias th bhort, there was inade I in analysis of base de	at seriously wea quate control o eficit (see Table 1	akens coi f confoui l of study	nfidence in the results nding factors. Study er /) and study does not g	. Enrolled patients were not nrolled 100 patients however give reason why.	
RESULTS						
Outcome No. patients (No. trials)	[intervention] n/N (%)	[comparator n/N (%)]	Risk estimate (95% CI) OR	Statistical significance p-value Heterogeneity ^a I ² (p-value)	
Arterial lactate	1			1		
Mortality, 24 hours	Difference between was statistically sign	24 h mortality f ificant (p < 0.00	or arteria)1)	al lactate <4 mmol/L (0	%) and ≥ 4 mmol/L (38.1%)	
Blood requirement, 24 hours	Difference in blood r lactate ≥2.9 mmol/L	requirement am (85.7%) was stat	nong the cistically s	patients with lactate < significant (p < 0.001)	<2.9 mmol/L (24.6%) and	
Base-deficit						
Mortality, 24 hours	Mortality, 24 hours Base-deficit of ≥12 mEq/L showed a 30.4% increased risk of mortality compared to below <12 mEq/L (1.3%).					
Blood requirement, 24 hours	Base-deficit of ≥12 mEq/L showed a 78.3% increased risk of blood transfusion requirement compared to below <12 mEq/L (36.4%).					
EXTERNAL VALIDI	тү					
Generalisability (rele	vance of the study p	opulation to th	e Guidel	ines target populatio	n)	
The evidence is not di apply. There is very lit	irectly generalisable to tle information (age o	o the Australian nly) given on th	populati e charac	ion and it is hard to juc teristics of the include	dge whether it is sensible to d population.	
Applicability (relevan	nce of the evidence t	o the Australia	n health	care system)		
The evidence is not an	oplicable to the Austra	alian healthcare	context	A single tertiary care	centre in India likely has	

The evidence is not applicable to the Australian healthcare context. A single tertiary care centre in India likely has significant differences compared to the Australian health care system.

STUDY DETAILS: Javali 2017

Additional comments

Authors conclusions: Emergency admission arterial lactate and Base Deficit are useful in predicting 24 h mortality, blood transfusion requirement and ICU admission. These values can be used to triage, identify shock early, assess transfusion requirement, and prognosticate trauma patients.

Cl, confidence interval; dL; decilitre; ED, emergency department; h, hour; Hb, haemoglobin; HR, heart rate; ICU, intensive care unit; mEq; milliequivalent; mmol; millimoles NA, not applicable; NPV, negative predictive value; NR, not reported; PPV; positive predictive value; SBP, systolic blood pressure; SI, shock index

STUDY DETAILS: Gaessler 2021

Citation

Gaessler H, Helm M, Kulla M, Hossfeld B, Schmid U, Kerchowski J, Bretschneider I. 2021. Prehospital evaluation and detection of induced coagulopathy in trauma: The PREDICT study. *Journal of Trauma and Acute Care Surgery*, 91(2). 344-351. doi: 10.1097/TA.00000000003246

Affiliation/Source of funds

Funding: None declared.

Author affiliations: Armed Forces Medical Centre Ulm, Department of Anaesthesiology and Intensive Care Medicine, Ulm, Cermany.

Conflicts of interest: Kulla M received research grants from the German Interdisciplinary Association of Critical Care and Emergency Medicine, German Federal Ministry of Education and Research and personal fees from Boehringer Ingelheim. All other authors declared no conflict of interest

Study design Level of evidence		Location	Setting
Prospective observational study.	pective observational III-2 y.		Two level I trauma centres
Intervention		Comparator	
Prognostic parameters assessed by ROTEM		NA	

Population characteristics

148 trauma patients \geq 18 years of age, non-pregnant, no pre-existing coagulation disorders, not receiving TXA before arrival to centre and ROTEM assay performed \leq 120 minutes.

Length of follow-up	Outcomes measured		
Follow-up at day 28 or hospital discharge.	28-day mortality		
Six patients who were not transported to one of the two	Transfusion requirement		
rticipating hospitals were excluded.	Detection of early coagulopathy after trauma		
	TIC-associated changes in blood gas analyses		
	*The aim of the study was to determine whether prognostic parameters (pH, lactate, base excess, haemoglobin) have an impact on the likelihood of developing TIC and HF		
participating hospitals were excluded.	The aim of the study was to determine whether prognostic parameters (pH, lactate, base excess, haemoglobin) have an impact on the likelihood of developing TIC and HF		

Method of analysis

The anonymised data sets were summarised using Microsoft Excel 2016. All parameters of the three defined groups were analysed with one-way analysis of variance. For the subgroup analysis with TICCS of \geq 10, normal distribution of all parameters was tested using the Shapiro-Wilk test. Normally distributed parameters were analysed with the independent sample *t* test and nonnormally distributed parameters with the Mann-Whitney *U* test.

INTERNAL VALIDITY

Overall risk of bias (descriptive)

Rating: Serious

Description: The study has some important problems and cannot be considered comparable to a well-performed randomised trial.

STUDY DETAILS: Ga	essler 2021					
RESULTS						
Population analysed	Intervention		Comparator			
Available	148		NA			
Analysed	148		NA			
Outcome	Intervention n/N (%) Mean + SD	Statistical significance p-value				
Prognostic paramete	rs					
Mortality	The study found that TIC and TIC with HF resulted in worse prognosis for mortality compared to those without coagulopathy. However, no data reported on prognostic factors and their association with outcomes of mortality or transfusion requirements. A correlation between prognostic indicators and mortality could not be determined.					
EXTERNAL VALIDIT	Y					
Generalisability (relev	ance of the study p	opulation to the Guide	lines target populatior	n)		
The evidence is directly patients regardless of the helicopter emergency	y generalisable to th the severity of injury medical services.	e Australian population . However, the study wa	with some caveats. The s performed only in pati	study included all trauma ients who required		
Applicability (relevan	ce of the evidence t	to the Australian health	n care system)			
The evidence is directly is similar to the Austra	y applicable to the A ian healthcare syste	ustralian healthcare cor m.	ntext. The study was per	formed in Germany which		
Additional comments						
Authors conclusions:						
In severely injured pati medical treatment and presence of HF at the i Future studies should and HE	ents, TIC and HF car d transport. Significa ncidence site. In pat investigate the pred	n already be present at t nt changes in blood gas ients with TICCS of ≥10 p ictive value of prehospit	he site of incidence and analysis parameters ar points, TIC and HF are si al blood gas parameter:	l do not only develop during e associated with the gnificantly more frequent. s and TICCS in terms of TIC		

L CI, confidence interval; HF, hyperfibrinolysis; not applicable, not applicable; ROTEM, rotational thromboelastometry; SD, standard deviation; TIC, trauma-induced coagulopathy; TICCS, trauma-induced coagulopathy clinical score; TXA, tranexamic acid.

Retrospective cohort studies

STUDY DETAILS: Sawamura 2009

Citation

Sawamura A, Hayakawa M, Gando S, Kubota N, Sugano M, Wada T, Katabami, K. 2009. Disseminated intravascular coagulation with a fibrinolytic phenotype at an early phase of trauma predicts mortality. *Thrombosis Research.124*(5):608-13.

doi:10.1016/j.thromres.2009.06.034

Affiliation/Source of funds

No conflicts of interests were declared.

Authors declared no sources of funding.

Author Affiliations: Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Graduate School of Medicine, Japan. (All authors).

Study design		Level of ev	idence	Location		Setting	
Retrospective cohort s	study	ıdy III-3		NR Emergency Depa (ED)		ncy Department	
Prognostic factor			Comparator	· · · · ·			
Fibrinogen				NA			
Prothrombin time							
platelets							
Population character	ristics						
all consecutive severe	trauma	patients de	fined as Injury	/ Severity Score (ISS)	≥9		
Length of follow-up				Outcomes measur	ed		
7-year study period (Ju	une 200	0 to July 20	07)	Mortality			
				Massive Bleeding			
INTERNAL VALIDIT	Υ						
Overall risk of bias (d	escripti	ive)					
Rating: Moderate							
Description: The study	/ appear	rs to provide	e sound evider	nce for a non-random	ised study but	t cannot l	be considered
comparable to a well-	perform	ned random	ised trial.				
RESULTS							
Prognostic factor	Outco	me	AUC	Optimal Cutoff	Sensitivity ((%)	Specificity (%)
Fibrinogen	Mortal	ity	0.828	1.9g/L	74.1		71.3
	Massiv	e bleeding	0.810	1.9g/L	77.8		3.2
	Surviv	ors (N = 259)	Mortality (N = 55)	OR		<i>p</i> value
Prothrombin time (sec)	13.4 ± 1	.8 (NR)		19.7±16.4 (NR)	NR		<i>p</i> = 0.000
Fibrinogen (g/L)	2.53 ± (0.9 (NR)		1.44 ± 0.8 (NR)	0.989 (0.979	, 0.998)	p = 0.015
Platelet count (10 ⁹ /L)	159 ± 7	9 (NR)		147 ± 82 (NR)	1.097 (1.003,	1.116)	p = 0.003
Lactate (mmol/L)	NR			NR	1.236 (1.016, 1.	.502)	p = 0.034
EXTERNAL VALIDIT	ΓY			·			
Generalisability (relev	vance o	f the study	population to	o the Guidelines targ	et populatior	ו)	
The evidence is not di	rectly ge	eneralisable	to the Austral	lian population and c	annot be sens	ibly appli	ed to the
Australian setting							
Applicability (relevan	ice of th	ne evidence	to the Austra	alian health care sys	tem)		

The evidence may not be applicable to the Australian healthcare context as the study did not report the location(s) of study data

STUDY DETAILS: Sawamura 2009

Additional comments

Authors notes:

Low fibrinogen level and a high FDP level within 4 hr after the onset of trauma are all considered to be independent predictors of death for trauma patients

Cl, confidence interval; dL; decilitre; h, hour; Hb, haemoglobin; HR, heart rate; mEq; milliequivalent; mmol; millimoles; NA, not applicable; NPV, negative predictive value; NR, not reported; PPV; positive predictive value; SBP, systolic blood pressure; SI, shock index

STUDY DETAILS: Kawatani 2016
Citation
Kawatani Y, Nakamura Y, Kurobe H, Suda Y, Hori T. 2016 Correlations of perioperative coagulopathy, fluid infusion and
blood transfusions with survival prognosis in endovascular aortic repair for ruptured abdominal aortic aneurysm.
World journal of emergency surgery: WJES.11(29). 1-6. doi: 10.1186/s13017-016-0087-0

Affiliation/Source of funds

No conflicts of interests were declared. Authors declared no external funding

Author affiliation: Department of Cardiovascular Surgery, Chiba-Nishi General Hospital, 107-1 Kanegasaku, Matsudo-Shi 2702251, Chiba-Ken, Japan (TH).

Study design	Level of evidence	Location	Setting	
Retrospective cohort study	III	Japan	Surgical, Chiba-Nishi General Hospital	
Prognostic factor		Comparator		
INR		NA		
APTT				
Platelet count				
Population characteristics				
Perioperative patients				
Length of follow-up		Outcomes measured		
Study period was from October 2013 to December 2015 with 24 hours and 30 day follow up		Mortality		
INTERNAL VALIDITY				
Overall risk of bias (descrip	Overall risk of bias (descriptive)			

Rating: Serious

Description: The study has some important problems relating to patient selection bias. Decisions to perform EVAR over standard open repair may influence the results.

RESULTS				
Outcome	Prognostic factor	Survival	Non-survival	<i>p</i> -value
24-hour survival	n	22	3	NR
	Preoperative APTT (seconds)	27.0 +/- 4.3	33.6 +/- 8.4	0.21
	Postoperative APTT (seconds)	38.9 +/-8.7	108.7 +/- 63.4	0.006
	APTT change (seconds)	11.9 +/- 9.2	75.0 +/- 58.9	0.006
	Preoperative PT-INR	1.2 +/- 0.16	1.2 +/- 0.2	0.802
	Postoperative PT-INR	1.3 +/- 0.2	1.5 +/- 0.28	0.295
	Preoperative Platelet count (10 ⁴ /uL)	16.1 +/- 5.4	17.3 +/- 3.0	0.616
	Postoperative Platelet count (10 ⁴ /uL)	10.2 +/- 5.0	7.7 +/- 1.9	0.558
	Platelet count change (10 ⁴ /uL)	5.9 +/- 6.2	9.5 +/- 5.2	0.452
30-day survival	n	20	5	NR
	Preoperative APTT (seconds)	26.8 +/- 4.3	32 +/- 7.0	0.119
	Postoperative APTT (seconds)	38.1 +/- 7.9	95.7 +/- 57.9	0.002
	APTT change (seconds)	11.3 +/- 8.9	62.7 +/- 54.1	0.002
	Preoperative PT-INR	1.2 +/- 0.16	1.23 +/- 0.19	0.0767

STUDY DETAILS: Kawatani 2016

Postoperative PT-INR	1.4 +/- 0.2	1.5 +/- 0.2	0.148
Preoperative Platelet count (10 ⁴ /uL)	16.2 +/- 5.54	16.8 +/- 2.7	0.767
Postoperative Platelet count (10 ⁴ /uL)	10.4 +/- 5.0	7.2 +/- 1.9	0.299
Platelet count change (10 ⁴ /uL)	-57 +/- 6.3	-9.6 +/- 4.0	0.335

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is not directly generalisable to the Australian population as findings are on a small specific population with a specific condition and cannot be sensibly applied to the Australian setting

Applicability (relevance of the evidence to the Australian health care system)

The evidence may not be applicable to the Australian healthcare context as the study did not report the location(s) of study data

Additional comments

Authors notes:

Study focussed on perioperative patients with endovascular aortic repair. This was a very small population (n = 25).

At both 24-h and 30 days post operation, there were no significant differences in preoperative APTT, PT-INR, or major coagulopathy between the survival groups and non-survival groups

APTT, activated partial thromboplastin time; CI, confidence interval; dL; decilitre; h, hour; Hb, haemoglobin; HR, heart rate; INR, international normalised ratio; mEq; milliequivalent; mmol; millimoles NA, not applicable; NPV, negative predictive value; NR, not reported; PPV; positive predictive value; PT, prothrombin time; SBP, systolic blood pressure; SI, shock index

STUDY DETAILS: Noorbhai 2016

Citation

Noorbhai, MA., Cassimjee, HM., Sartorius, B. & Muckart, DJJ. 2016. Elevated international normalised ratios correlate with severity of injury and outcome. *South African Medical Journal 106*(11), 1141-1145. doi: 10.7196/SAMJ.2016.v106i11.10356

Affiliation/Source of funds

The authors declared no information on potential conflicts of interest. The authors provided no details on external funding

Author affiliations: Department of General Surgery, School of Clinical Medicine, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa (MAN); Trauma Unit and Trauma Intensive Care, Inkosi Albert Luthuli Central Hospital, Durban, South Africa (HMC); Discipline of Public Health Medicine, School of Nursing and Public Health, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa (BS)

Trauma Unit and Trauma Intensive Care, Inkosi Albert Luthuli Central Hospital, Durban, South Africa (DJJM)

Study design	Level of evidence	Location	Setting		
Retrospective cohort	III	Durban, South Africa	Level 1 Trauma centre		
Intervention	·	Comparator			
INRs ≤ 1.20		INRs > 1.20	INRs > 1.20		
Population characteristics					
Of the 1000 patients included, 752 were male with an average age of 29 (median of 27). 36.9% of patients were aged between 21-30 years old. 16.5% were <16 years old. 1.6% were >70 years old.					
Length of follow-up Outcomes measured					
First 1000 patients during 2007-2011 Mortality					
Method of analysis					
Multiple Poisson regression a	Multiple Poisson regression analysis				
INTERNAL VALIDITY					
Overall risk of bias (descriptive)					
Rating: Serious					
Description: The study has important problems relating to insufficient adjustment for confounders					

STUDY DETAILS: No	STUDY DETAILS: Noorbhai 2016				
RESULTS					
Population analysed	Intervention (INRs :	≤ 1.20)	Comparator (INRs	> 1.20)	
Available	454 (48.3%)		485 (51.7%)		
Analysed	454		485		
Outcome	Intervention	Comparator	Adjusted Risk	Statistical significance	
	n/N (%)	n/N (%)	Ratio (95% Cl)	<i>p</i> -value	
	Mean ± SD	Mean ± SD			
External admissions (Scene) INRs ≤ 1.20 v II	NRs > 1.20			
Mortality	15/121 (12.4%)	44/107 (41.1%)	aRR 3.68 (2.11, 6.44)	p < 0.001	
N = 228					
Inter-hospital transfe	rs (non-scene) INRs ≤	1.20 v INRs > 1.20			
Mortality	59/361 (16.3%)	88/350 (25.1%)	aRR 1.54 (1.15, 2.05)	p = 0.004	
N = 711					
All INRs ≤ 1.20 v INRs > 1.20					
Mortality	74/482 (15.4%)	132/457 (28.9%)	aRR 1.92 (1.49, 2.48)	p < 0.001	
N = 939					
EXTERNAL VALIDIT	Y				
Generalisability (relevance of the study population to the Guidelines target population)					
The evidence is directly	generalisable to the <i>i</i>	Australian population w	vith some caveats. The st	udy was performed in	
patients with trauma w	vith no restriction on s	everity or mechanism o	of trauma.		
Applicability (relevance of the evidence to the Australian health care system)					
The evidence is probably applicable to the Australian healthcare context with some caveats. The study was performed in South Africa which has a different healthcare system to Australia					
Additional comments					
Authors conclusions:					
INRs were associated w	vith worse outcomes. ⁻	There was a direct corre	elation between INRs and	d ISSs. The INR may help	
identify patients at risk	in resource-depleted	environments. Further	studies will assist in ider	tifying optimal overall	
cut-off values for INR, ISS and ISS subgroups that would help identify patients at risk. Earlier recognition of ACoTS may					
help reduce mortality					

aRR, adjusted risk ratio; CI, confidence interval; INR, international normalised ratio; ISS, injury severity score; SD, standard deviation

STUDY DETAILS: McQuilten 2017a

Citation

McQuilten ZK, Wood EM, Bailey M, Cameron PA, Cooper DJ. Fibrinogen is an independent predictor of mortality in major trauma patients: A five-year statewide cohort study. Injury. 2017;48(5):1074-1081. doi:10.1016/j.injury.2016.11.021

Affiliation/Source of funds

Author affiliations:

Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), Monash University, Melbourne, Australia; Transfusion Research Unit, Monash University, Melbourne, Australia. Electronic address: zoe.mcquilten@monash.edu. 2Transfusion Research Unit, Monash University, Melbourne, Australia.

3Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), Monash University, Melbourne, Australia. 4Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.

Conflict of interest: The authors have no conflict of interest to disclose.

Funding: ZM is supported through an Australian National Health and Medical Research Council (NHMRC) Centre of Research Excellence for Patient Blood Management in Critical Illness and Trauma (APP1040971).

The Victorian State Trauma Registry (VSTR) is a Department of Health and Human Services, State Government of Victoria and Transport Accident Commission funded project.

STUDY DETAILS: McQuilten 2017a			
Study design	Level of evidence	Location	Setting
Retrospective cohort	III-3	2 Level I trauma centres, Australia	Victorian State Trauma Registry
Prognostic factor Comparator			
Fibrinogen concentration		N/A	
Population characteristics			
Patients aged 18 or older who presented to the two major trauma hospitals and who had a fibrinogen level measured during initial resuscitation. major trauma were defined as those meeting any of the following criteria: - Death after injury;			
- Admission to an intensive care unit (ICU) requiring mechanical ventilation for at least part of their ICU stay - Urgent surgery for intrathoracic, intracranial, intra-abdominal procedures, or fixation of pelvic or spinal fractures.			

Length of follow-up	Outcomes measured
between January 2008 and July 2011.	Mortality
	Transfusion volume (RBC, FFP, PLT, Cryoprecipitate or FC)

Method of analysis

The association between first fibrinogen levels and in-hospital mortality was modelled using multiple logistic regression. Variables considered included age, gender, ISS, pH, temperature, GCS, injury type (blunt, penetrating, other), chest decompression, pulse and systolic BP on admission, time from injury to admission, Hb, platelet count, INR, aPTT and fibrinogen level. As there were a high proportion of patients with missing values, we included a missing category for those variables with high missing rates (>5% of patients).

The relationship was modelled in two ways, with fibrinogen treated as a continuous variable, and categorised as outlined above. The models were constructed using both stepwise selection and backwards elimination techniques before undergoing a final assessment for clinical and biological plausibility. Predicted mortality across the range of fibrinogen values was estimated using multiple logistic regression. The association between hospital and ICU LOS in survivors was modelled using linear regression with ICU LOS log-transformed. Sensitivity analysis for the association between mortality and fibrinogen levels was performed. As there were a high proportion of patients with missing values, we repeated our regression analysis using only patients with complete data to assess if the inclusion of missing category altered the findings of the regression analysis.

Predictors for low fibrinogen (defined as <1.5g/L) on initial presentation were modelled using multiple logistic regression, including categories for missing values as in the mortality model.

Descriptive statistics are reported as mean and standard deviation (SD) for normally distributed data and median and interquartile range (IQR) for non-normally distributed data. Hypothesis testing was performed using Chi Square for categorical data and either t-test or Wilcoxon rank sum for continuous data depending on data distribution. Fibrinogen was categorised as 4g/L to incorporate the normal reference range, as well as the commonly used thresholds for fibrinogen supplementation. The GCS was categorised according to clinical convention with 3 to 8 representing severe, 9 to 12 moderate and 13 to 15 a mild head injury. Temperature and pH were categorised according to normal ranges, with categories for below, within and above the normal range. Platelet count was categorised according to normal range, with categories for below normal range, and INR was categorised according to normal range, with categories for above normal range. Patient age and ISS were categorised into quintiles. Patients were categorized as having received a massive transfusion if they had received 10 or more units of red blood cells (RBC) during the admission. To increase the robustness of the study, a two-sided p-value of <0.01 was used to

indicate statistical significance

INTERNAL VALIDITY

Overall risk of bias (descriptive)

Rating: Moderate

Description: The study appears to provide sound evidence for a non-randomised study but cannot be considered comparable to a well-performed randomised trial.

STUDY DETAILS: McQuilten 2017a				
RESULTS				
Outcome	[intervention] n/N (%) median (IQR)	[reference] n/N (%) median (IQR)	Risk estimate (95% CI)	Statistical significance p-value Heterogeneity ^a I ² (p-value)
Temperature		,	,	
Mortality, in-hospital N = 4773		36.6 to 37.5°C (reference)	Unadjusted OR	Unadjusted:
<35 °C 35 to 36.5 °C >37.5 °C missing	n=428 n=1732 n=295 n=536	n=1782	OR 9.56 (7.09, 12.89) OR 2.12 (1.62, 2.79) OR 0.85 (0.46, 1.57)	p < 0.001 p < 0.001 p = 0.57
<35 °C 35 to 36.5 °C >37.5 °C			OR 1.91 (1.28, 2.85) OR 1.11 (0.80, 1.56) OR 0.597 0.72 (0.35, 1.50)	Adjusted: p = 0.002 p = 0.53 p = 0.38
Mortality, in-hospital N = 4773 1.5 to 1.9 >20		<1.5 (reference)	Unadjusted OR OR 10.26 (7.48, 14.05) OR 13.29 (9.43, 18.74)	Unadjusted: p < 0.001 p < 0.001
1.5 to 1.9 >20			Adjusted OR: OR 3.23 (2.12, 4.92) OR 3.02 (1.82, 5.03)	Adjusted: p < 0.001 p < 0.001
Platelet count	1		1	
Mortality, in-hospital N = 4773 <100 100 to 150		>150 x10 ⁹ /L (reference)	Unadjusted OR OR 4.44 (3.20, 6.16) OR 2.56 (1.97, 3.32)	Unadjusted: p < 0.001 p < 0.001
<100 100 to 150 Fibrinogen concentr	ation		Adjusted OR: OR 0.50 (0.30, 0.84) OR 0.98 (0.69, 1.40)	Adjusted: p = 0.009 p = 0.91
Mortality, in-hospital		2 g/L (reference)		
N = 4773 <1 g/L 1.0-1.5 g/L 1.6-1.9 g/L >4 g/L	54/114 (47.4) 71/283 (25.1) 77/617 (12.5) 53/735 (7.2)	186/3024 (6.2)	Unadjusted OR OR 13.73 (9.24, 20.41) OR 5.11 (3.75, 6.94) OR 2.18 (1.64, 2.89) OR: 1.19 (0.86, 1.63)	Unadjusted: p < 0.001 p < 0.001 p < 0.001 p = 0.291
<1 g/L 1.0-1.5 g/L 1.6-1.9 g/L >4 g/L	54/114 (47.4) 71/283 (25.1) 77/617 (12.5) 53/735 (7.2)		Adjusted OR* OR 3.28 (1.71, 6.28) OR 2.08 (1.36, 3.16) OR 1.39 (0.97, 2.00) OR 1.04 (0.70, 1.52)	Adjusted: <i>p</i> < 0.001 <i>p</i> = 0.001 <i>p</i> = 0.08 <i>p</i> = 0.86
EATERNAL VALIDI				
Generalisability (rele	vance of the study p	opulation to the Guideli	nes target population)	1 · · · · · ·
The evidence is direct	ly generalisable to th	e Australian population. 7	The study was conducted	d in Australia
Applicability (relevar	nce of the evidence t	o the Australian health	care system)	
The evidence is directly applicable to the Australian healthcare context. The study was conducted in Australia				

STUDY DETAILS: McQuilten 2017a

Additional comments

Authors conclusions:

low initial fibrinogen concentrations was associated with increased in-hospital mortality, with a progressive increase in the adjusted OR with decreasing fibrinogen levels. The association with in-hospital mortality remained after adjusting for potential confounders

Younger age, lower GCS, systolic blood pressure <90 mmHg, chest decompression, penetrating injury, greater ISS, lower pH and temperature were all associated with lower fibrinogen levels.

INR was associated with mortality in our study cohort even after adjusting for fibrinogen level.

aPTT, activated partial thromboplastin time; CI, confidence interval; FC, fibrinogen concentrate; FFP, fresh frozen plasmaINR, international normalised ratio; IQR, interquartile range; N/A, not applicable; NR, not reported; OR, odds ratio; PLT, platelet; RBC, red blood cells;

* After adjusting for age, gender, ISS, injury type, pH, temperature, Glasgow Coma Score (GCS), initial international normalised ratio and platelet count

STUDY DETAILS: McQuilten 2017b

Citation

McQuilten ZK., Bailey M., Cameron PA., Standworth SJ., Venardos K., Wood EM., Cooper DJ. Fibrinogen concentration and use of fibrinogen supplementation with cryoprecipitate in patients with critical bleeding receiving massive transfusion: a bi-national cohort study. *British Journal of Haematology*, 2017, 179, 131–141. doi: 10.1111/bjh.14804.

Affiliation/Source of funds

Author affiliations: Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), Transfusion Research Unit, Department of Epidemiology and Preventive Medicine, Monash University, Monash Health Melbourne Australia and NHS Blood and Transplant/Oxford University Hospitals NHS Trust, John Radcliffe Hospital, and Radcliffe Department of Medicine, University of Oxford, Oxford, UK

Conflict of interest: The authors have no conflict of interest to disclose.

Funding: ZM is supported through a National Health and Medical Research Council (NHMRC) Early Career Fellowship (APP1111485).

Study design	Level of evidence	Location	Setting
Retrospective cohort	-3	20 hospitals across Australia, New Zealand (ANZ trauma registry)	Hospital
Prognostic factor		Comparator	
Fibrinogen concentration		N/A	

Population characteristics

3566 patients aged \ge 18 years of age who received massive transfusion (\ge 5 units of RBC within any 4 hour period during admission). Of these, 2829 patients (79%) had fibrinogen levels recorded at the time of massive transfusion.

Length of follow-up	Outcomes measured
Between April 2011 and October 2015.	Mortality
	Transfusion volume (RBC, FFP, PLT, Cryoprecipitate or FC)

Method of analysis

Association between plasma fibrinogen concentration and in-hospital mortality was modelled by multiple logistic regression analysis. Variables considered for inclusion in the model were hospital, age, gender, clinical context, CCI, Hb, platelet count, APTT, INR and base excess at massive transfusion commencement.

INTERNAL VALIDITY

Overall risk of bias (descriptive)

Rating: Moderate

Description: The study appears to provide sound evidence for a non-randomised study but cannot be considered comparable to a well-performed randomised trial.
STUDY DETAILS: Mc	STUDY DETAILS: McQuilten 2017b					
RESULTS						
Outcome	[intervention]	[comparator]	Risk estimate (95% CI)	Statistical significance		
	n/N (%)	n/N (%)		<i>p</i> -value		
	median (IQR)	median (IQR)		Heterogeneity ^a		
				l² (p-value)		
Fibrinogen concentrat	tion (<1 g/L, 1.0 to 1.9	g/L, >4 g/L FC versus	2 to 4 g/L)			
Mortality	<1 g/L: 91/198 (46)	2-4 g/L (reference)				
N = 2829	1.0-1.5 g/L: 163/622 (26)	200/1233 (16)	Unadjusted OR	Unadjusted:		
<1 g/L	1.6-1.9 g/L: 103/532 (19)		OR 4.39 (3.20, 6.04)	p < 0.001		
1.0-1.9 g/L	>4 g/L: 56/244 (23)		OR 1.55 (1.26, 1.90)	p < 0.001		
>4 g/L			OR: 1.54 (1.10, 2.15)	p = 0.012		
			Adjusted OR:	Adjusted:		
<1 g/L			<1 g/L: OR 2.31 (1.48, 3.60)	p < 0.001		
1.0-1.9 g/L			1.0-1.9 g/L: OR 1.29 (0.99, 1.67)	p = 0.056		
>4 g/L			>4 g/L: OR 2.03 (1.35, 3.04)	p = 0.001		
RBC transfused at 24	<1 g/L: 11 (8, 18)	2-4 g/L (reference)	NR	p < 0.001		
hours, units	1.0-1.9 g/L: 9 (7, 13)	8 (6, 11)				
N = 2829	>4 g/L: 7 (6, 9)					
FFP transfused at 24	<1 g/L: 8 (4, 14)	2-4 g/L (reference)	NR	p < 0.001		
hours, units	1.0-1.9 g/L: 6 (4, 10)	5 (3, 8)				
N = 2829	>4 g/L: 4 (2, 6)					
PLT transfused at 24	<1 g/L: 2 (1, 4)	2-4 g/L (reference)	NR	p < 0.001		
hours, adult patient	1.0-1.9 g/L: 2 (1, 3)	1 (0, 2)				
dose	>4 g/L: 0 (0, 1)					
N = 2829						
Cryoprecipitate or FC	<1 g/L: 4.2 (2.1, 8.5)	2-4 g/L (reference)	NR	p < 0.001		
transfused at 24	1.0-1.9 g/L: 3.8 (0, 6.8)	1.7 (0.0, 4.2)				
hours,	>4 g/L: 0.0 (0.0, 1.9)					
Base deficit (–29 to –8.	7, –8.6 to –5, –4.9 to -	-1.5 versus ≥ -1.4)	1			
Mortality	NR	NR				
N = 2829			Unadjusted OR:	Unadjusted:		
–29 to –8.7			OR 4.82 (3.65, 6.35)	p < 0.001		
–8.6 to –5			OR 1.29 (0.95, 1.76)	p = 0.10		
–4.9 to –1.5			OR 0.89 (0.65, 1.25)	p = 0.52		
			Adjusted OR:	Adjusted:		
–29 to –8.7			OR 3.68 (2.70, 5.03)	p < 0.001		
–8.6 to –5			OR 1.33 (0.95, 1.86)	p = 0.10		
–4.9 to –1.5			OR 0.94 (0.66, 1.33)	p = 0.72		
EXTERNAL VALIDITY	1					
Generalisability (releva	ance of the study po	pulation to the Guide	elines target population)			
The evidence is directly generalisable to the Australian population. The study was conducted in Australia and New Zealand.						
Applicability (relevanc	e of the evidence to	the Australian healt	h care system)			
The evidence is directly New Zealand.	applicable to the Aus	stralian healthcare co	ntext. The study was condu	icted in Australia and		
Additional comments						
Authors conclusions:						

After adjustment, fibrinogen < 1 g/L and > 4 g/L remained independently associated with survival.

STUDY DETAILS: McQuilten 2017b

Lower fibrinogen concentrations were associated with increased mortality after adjusting for clinical context, comorbidities and other laboratory parameters, but, in addition, higher fibrinogen concentrations were also identified as being linked with mortality risk.

aPTT, activated partial thromboplastin time; CCI, Charlson co-morbidity index; CI, confidence interval; FC, fibrinogen concentrate; FFP, fresh frozen plasma; hB, haemoglobin; INR, international normalised ratio; IQR, interquartile range; N/A, not applicable; NHS, National Health Service; NR, not reported; OR, odds ratio; PLT, platelet; RBC, red blood cells; UK, United Kingdom

Single-arm analysis of RCT

STUDY DETAILS: Moore 2020

Citation

Moore HB, Tessmer MT, Moore EE, Sperry JL, Cohan MJ, Chapman MP, Pusateri AE, Guyette FX, Brown JB, Neal MB, Zuckerbraun B, Sauaia A. 2020. Forgot calcium? Admission ionized-calcium in two civilian randomized controlled trials of prehospital plasma for traumatic hemorrhagic shock. *Journal of Trauma and Acute Care Surgery 88*(5), 588-596. doi: 10.1097/TA.00000000002614

Affiliation/Source of funds

The study was funded by the Department of Defense, US Army Medical Research and Materiel Command. Moore EE and Sauaia A were partially funded through the National Institute of General Medical Sciences.

Author affiliations: Moore EE affiliated with Haemonetics/Instrumentation Laboratory/Stage, Grants. Neal MB affiliated with Janssen Pharmaceuticals/CSL, Behring/Haemonetics. Sauaia A affiliated with Haemonetics.

The authors declared no conflicts of interest.

Study design	Level of evidence	Location	Setting	
MA of 2 randomised controlled trials (PAMPer and COMBAT)	II	PAMPer (Sperry 2018): Pittsburgh COMBAT (Moore 2018): Denver, Colorado	2 trauma centres	
Intervention		Comparator		
Hypocalcaemia (i-Ca ≤ 1.0 mmol/L)		Normocalcaemia (i-Ca >1.0 mmol/L)		

Population characteristics

Adults with traumatic haemorrhagic shock (SBP \leq 70mmHg or 71-90 mmHg + HR \geq 108 bpm) enrolled in the University of Pittsburgh Medical Centre (PAMPer trial) or COMBAT trial. Patients had blunt or penetrating injuries for whom i-Ca was collected before calcium supplementation.

Length of follow-up	Outcomes measured
Only patients enrolled in the University of Pittsburgh Medical Centre in PAMPer were included in the analysis. The authors were unable to obtain i-Ca levels from the other facilities participating in PAMPer.	Mortality Transfusion requirements

INTERNAL VALIDITY

Overall risk of bias (descriptive)

Rating: High

Description: The study has plausible bias that raises some doubt about the results.

DE	CI	II TC	
кг	-50		

RESULIS						
Population analyse	sed Intervention			Comparator		
Randomised		70			90	
Efficacy analysis (I	FT)	70			90	
Efficacy analysis (P	P)	70			90	
Safety analysis		70			90	
Outcome	Interv	vention	Comparator	Risk	c estimate (95%	Statistical significance
n/N (9		%)	n/N (%) CI)		<i>p</i> -value	
	Mean	± SD	Mean ± SD			
Hypocalcaemia (i-0	Ca, ≤1.0	mmol/L) vs no	rmocalcaemia (i-Ca, >	•1.0 mm	ol/L)	
Mortality	13/70	(18.6)	11/90 (12.2)	NR		No significant difference
N = 160						p = 0.26
	Hypoo with s confo	Hypocalcaemia independently associated with survival after adjustment for confounders (age, ISS, Shock index)		HR	(1.02, 1.13)	p = 0.01
RBC transfusion in	5 (2-10)) (n = 70)	1 (0-5) (n = 90)	NR		Favours
24 hours, units						normocalcaemia
N = 160						<i>p</i> = 0.0002

STUDY DETAILS: Moore 2020

Plasma transfusion in 24 hours, units N = 160	2 (1-7) (n = 70)	2 (0-4) (n = 90)	NR	Favours normocalcaemia p = 0.007
Platelet transfusion in 24 hours, units N = 160	0 (0-1) (n = 70)	0 (0-0) (n = 90)	NR	No significant difference p = 0.30
Cryoprecipitate transfusion in 24 hours, units N = 160	0 (0-0) (n = 70)	0 (0-0) (n = 90)	NR	Favours normocalcaemia p = 0.0003

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population. The study population consisted of patients with both blunt and penetrating trauma which reflects the Australian trauma population.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian healthcare context with few caveats. The studies were performed in the US which has a different health care system to Australia.

Additional comments

Authors conclusions:

In summary, trauma patients resuscitated with prehospital plasma often present to the hospital with hypocalcaemia, which place them at increased risk of mortality. Citrate in the plasma contributes to hypocalcaemia, but other causes of low i-Ca remain unclear because some patients who did not receive plasma also had hypocalcaemia. Thus, further research into the mechanisms of postinjury hypocalcaemia and associated mortality is needed.

CI, confidence interval; i-Ca, ionised calcium; ITT, intent to treat; MA; meta-analysis; NR, not reported; PP, per-protocol; RBC, red blood cell; RCT, randomised controlled trial; SD, standard deviation; US, United States

STUDY DETAILS: Lester 2019

Citation

Lester, ELW., Fox, EE., Holcomb, JB., Brasel, KJ., Bulger, EM., Cohen, MJ., Cotton, BA., Fabian, TC., Kerby, JD., O'Keefe, T., Rizoli, SB., Scalea, TM., Schreiber, MA. & Inaba, K. 2019. The impact of hypothermia on outcomes in massively transfused patients. *Journal of Trauma and Acute Care Surgery*, *86*(3). 458-463. doi: 10.1097/TA.00000000002144

Affiliation/Source of funds

Details on funding not provided. The authors declared no conflicts of interest.

Author affiliations: The Division of General Surgery Department of Surgery, University of Alberta, Edmonton, Alberta, Canada (E.L.W.L.)., Center for Translational Injury Research Division of Acute Care Surgery, Department of Surgery, Medical School, University of Texas Health Science Center, Houston, Texas (E.E.F., J.H.)., Division of Trauma Critical Care and Acute Care Surgery, School of Medicine, Oregon Health and Science University, Portland, Oregon (K.B.)., Division of Trauma and Critical Care Department of Surgery, School of Medicine, University of Washington, Seattle, Washington (E.M.B.)., Department of Surgery University of Colorado, Denver, Colorado (M.C.)., Center for Translational Injury Research Division of Acute Care Surgery, Department of Surgery, Medical School, University of Texas Health Science Center, Houston, Texas (B.A.C.)., Division of Trauma and Surgical Critical Care Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (T.C.T.C.F.)., Division of Trauma Burns and Surgical Critical Care, Department of Surgery, School of Medicine, University of Alabama, Birmingham, Alabama (J.D.K.)., Division of Trauma Critical Care and Emergency Surgery, Department of Surgery, University of Arizona, Tucson, Arizona (T.O.)., Trauma and Acute Care Service St. Michael's Hospital, Toronto, Ontario, Canada (S.B.R.)., R Adams Crowley Shock Trauma Center University of Maryland, Baltimore, Maryland (T.S.)., Division of Trauma Critical Care and Acute Care Surgery, Department of Surgery, Oregon (M.A.S.). & Health and Science University, Portland, Oregon; and Division of Trauma and Critical Care LAC+USC Medical Center, University of Southern California, Los Angeles, California (K.I.).

STUDY DETAILS: Lester 2019 Study design Level of evidence Location Setting 111-2 USA Prospective cohort Level 1 trauma centres **Prognostic Factor** Comparator Temperature not applicable **Population characteristics** The population in both intervention groups were predominately male (79% and 84%). Both groups had similar mean ages (39.4, 37.1 years). Length of follow-up Outcomes measured Patients were followed up after 6 hours, 24 hours and 30 Transfusion volume, mortality days Method of analysis STATA was used to conduct the analysis Backwards stepwise negative binomial regression approach was used to model the RBCs administered while hypothermic or normothermic. Frequency weighting was applied. The fit was tested by plotting the dependant variables against both Poisson and negative binomial distributions, comparing the predicted values from each regression to the recorded values and performing goodness of fit tests. A backwards stepwise logistic regression (removal criteria, p > 0.05) was performed to determine the adjusted odds ratios (ORs) of 24-hour and 30-day mortality for patients presenting with hypothermia on initial measurement. The ORs were adjusted for the following covariates: number of RBC units used in 24 hours, need for emergent OR (within 90 minutes of arrival), ISS, mechanism of injury (blunt versus penetrating), weight, age, sex, and initial pulse and systolic blood pressure on arrival was assessed and modelled accordingly. The area under the receiver operating characteristic curve was calculated. The analysis was conducted using STATA (version 13; College Station, TX). **INTERNAL VALIDITY** Overall risk of bias (descriptive) Ratina: Serious Description: The study has some important problems and cannot be considered comparable to a well-performed randomised trial. RESULTS Normothermic Population Hypothermic analysed Available 399 187 Analysed 187 399 Outcome Hypothermic Normothermic **Risk estimate (95%** Statistical significance n/N (%) n/N (%) CI) p-value

Temperature				
24 hr Mortality	NR/399	NR/187	OR 2.7 (1.7, 4.5)	Favours hypothermia
N = 586	NR	NR		p < 0.00
30 Day Mortality	NR/399	NR/187	OR 1.8 (1.3, 2.4)	Favours hypothermia
N = 586	NR	NR		p < 0.00
Blood transfusion	N = 399	N = 187	RR 0.90 (0.89, 0.92)	No significant difference
(RBCs units in 24 hrs)	9.9 (11.4)	6.3 (7.9)		p = 0.00
N = 586				

EXTERNAL VALIDITY

Mean ± SD

Generalisability (relevance of the study population to the Guidelines target population)

Mean ± SD

The evidence is directly generalisable to the Australian population. The study included patients ≥ 15 years of age admitted to a trauma centre. The study population is reflective of the Australian clinical population.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian healthcare context with few caveats. The study was performed in the USA.

STUDY DETAILS: Lester 2019

Additional comments

Authors conclusions:

Hypothermia is associated with an increase in blood product consumption and is an independent predictor of mortality

Cl, confidence interval; ISS, injury severity score; NA, not applicable; NR, not reported; OR, Odds Ratio; RBCs, Red Blood Cells; RR, Relative Risk; SD, standard deviation; USA, United States of America

Massive haemorrhage protocol (Question 2) F2

Systematic reviews/meta-analyses

STUDY DETAILS: Vogt 2012

Citation

Vogt, K. N., Van Koughnett, J. A., Dubois, L., Gray, D. K. and Parry, N. G. (2012), The use of trauma transfusion pathways for blood component transfusion in the civilian population: a systematic review and meta-analysis*. Transfusion Medicine, 22: 156-166. doi:10.1111/j.1365-3148.2012.01150.x

Affiliation/Source of funds

The study did not receive funding or support in any manner.

Author affiliations: The primary author of the review was also the primary author of one of the included studies. Hence all assessments for this study were completed by two other authors. Department of Surgery, Schulich School of Medicine & Dentistry, University of Western Ontario (K.N.V, J.V.K, L.D, D.K.G, & N.G.P). Trauma Program, London Health Sciences Centre, (D.K.G, & N.G.P). Centre for Critical Illness Research (N.G.P). Division of Critical Care, London Health Sciences Centre, London, Ontario, Canada (N.G.P)

Study design	Level of evidence	Location	Setting	
Systematic review and meta-analysis of observational studies	1-111	5 studies in USA 1 in Canada 1 in Denmark	Civilian trauma centres (hospitals)	
Intervention		Comparator		
Blood products delivered through the use of a formal trauma transfusion pathway (TTP)		Blood products delivered without the use of a formal trauma transfusion pathway (TTP)		

Population characteristics

Adult patients requiring massive transfusion due to civilian trauma

Included 7 observational studies that compared trauma patients requiring massive transfusion (MT) through the use of a formal Trauma Transfusion Protocol (TTP) with a retrospective cohort of patients requiring MT prior to the introduction of a TTP

Length of follow-up	Outcomes measured		
Citations published between 1980 and 2011	Mortality, indices of coagulation, Amount of blood component products transfused, Complications		

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Moderate

Description: More than one non-critical weakness - the systematic review has more than one weakness but no critical flaws. It may provide an accurate summary of the results of the available studies that were included in the review.

Risk of bias of included studies: The overall risk of bias for all included studies was judged by the review authors to be high, primarily due to a lack of adequate adjustment for confounding, and the universal use of retrospective controls. **RESULTS:**

Risk estimate (95%

CI)

Statistical significance

p-value

Heterogeneity^a I² (p-value)

No TTP

n/N (%)

Mean ± SD

Outcome	TTP
No. patients	n/N (%)
(No. trials)	Mean ± SD

ITP versus control				
30-day or in-hospital mortality	NR	NR	RR 0.69 (0.55, 0.87)	Favours TTP p = 0.001
N = 1801 (6 studies)				Moderate heterogeneity $I^2 = 49\%$ (p = 0.08)
Adjusted estimate ^b				
Cotton 2008	48/94 (51.1)	77/117 (65.8)	RR 0.51 (0.29, 0.90)	<i>p</i> = 0.02
Unadjusted estimate (5 studies)	NR	NR	RR 0.72 (0.56, 0.91)	p = 0.001 Moderate heterogeneity

STUDY DETAILS: Vogt 2012 Dente 2009 25/73 (34.2) 46/84 (55) RR 0.69 (0.52, 0.91) $l^2 = 49\% (p = 0.08)$ Johansson 2009 17/50 (34) 46/82 (56) RR 0.65 (0.51, 0.82) O'Keefe 2008 NR NR RR 1.05 (0.77, 1.44) Riskin 2009 ND NR RR 0.42 (0.20, 0.90) Voqt 2009 NR NR RR 0.64 (0.32, 1.27) Multi-organ failure Favours TTP Cotton 2009 NR NR OR 0.20 (0.11, 0.39) p = NRFavours TTP Sepsis Cotton 2009 NR NR OR 0.43 (0.21, 0.88) p = NRBlood component NR NR MD -1.17 (-2.70, 0.36) No significant difference use (24 hrs, PRBC) p = 0.27N = 1267 (3 studies) No significant Cotton 2008 18.8 ± 11.2 (94) MD 0.00 (-3.04, 3.04) heterogeneity 19.8 ± 11.2 (117) l² = 0% (p = 0.78) Johansson 2009 18 ± 12.6 (442) 19.2 ± 15.8 (390) MD -1.20 (-3.16, 0.76) Voat 2009 23 ± 10.7 (23) 25 ± 15.2 (23) MD -2.00 (-9.60, 5.60) NR RR -0.50 (-3.37, 2.37) Blood component NR Favours TTP use (24 hrs, FFP) p = 0.22N = 1089 (3 studies) 9.9 ± 7 (94) 12.4 ± 12.5 (117) RR -2.50 (-5.17, 0.17) No significant Cotton 2008 heterogeneity 13.5 ± 12.3 (442) 12.1 ± 15.2 (390) RR 1.40 (-0.49, 3.29) Johansson 2009 $l^2 = 0\% (p = 0.06)$ 14 ± 8 (23) 15 ± 10.1 (23) RR -1.00 (-6.27, 4.27) Vogt 2009 Blood component NR NR NR NR use (24 hrs, PLT) N = 435 (3 studies) Cotton 2008 31 ± NR (94) 6.8 ± NR (117) Johansson 2009 5.0 ± NR (442) 1.7 ± NR (46) Vogt 2009 3 ± NR (23) 2 ± NR (23) Favours TTP Blood component 23.9 20.5 NR use (PRBC, overall) N = 77 (1 study) Riskin 2009 Blood component 12.3 10.7 NR Favours TTP use (FFP, overall) N = 77 (1 study) Riskin 2009 Blood component 2.3 2.8 NR Favours no TTP use (PLT, overall) N = 77 (1 study) Riskin 2009 **EXTERNAL VALIDITY** Generalisability (relevance of the study population to the Guidelines target population) The evidence is directly generalisable to the Australian population Applicability (relevance of the evidence to the Australian health care system) The evidence is directly applicable to the Australian healthcare context with few caveats, (depending on the differences in TTP used in Australia). Additional comments Authors conclusions: The authors concluded that the use of TTPs appears to be associated with a reduction in mortality amongst trauma

patients requiring MT without a clinically significant increase in the number of PRBC transfused and a potential reduction in plasma transfusion. A RCT is required to provide higher-level evidence.

STUDY DETAILS: Vogt 2012

Cotton 2008, Cotton 2009, Dente 2009, Johansson 2009, O'Keefe 2008, Riskin 2009, Vogt 2009

Cl, confidence interval; ITT, intention-to-treat; MD, mean difference; MT, massive transfusion; NR, no result; OR, odds ratio; PLT, platelets; PP, per-protocol; PRBC, packed red blood cells; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation; TTP, trauma transfusion pathway

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.
b. Adjusted for age, gender, mechanism of injury, TRISS, and 24-hour transfusion requirements

STUDY DETAILS: Mitra 2013

Citation

Mitra, B., O'Reilly, G., Cameron, P. A., Zatta, A. and Gruen, R. L. (2013), Effectiveness of MTP on mortality. ANZ J Surg, 83: 918-923. doi:10.1111/ans.12417

Affiliation/Source of funds

Details on funding or potential conflicts of interest not provided.

Author affiliation: The Alfred Hospital, Australia (B.M., G.O., P.A.C. & R.L.G.); Monash University, Australia (B.M., G. O., P.A.C. & A.Z.)

Study design	Level of evidence	Location	Setting	
Systematic review and meta-analysis of observational studies	1-111	Australia	Single Centre, trauma	
Intervention		Comparator		
After institutional massive transfusion protocol was implemented (post-MTP)		Pre-MTP		

Population characteristics

Adult trauma patients in the initial trauma ResusCitation phase

Mean mortality pre-MTP was 41.3% (SD 13.1)

All observational studies that compared patients in the same institution in a period prior to the implementation of an MTP

Length of follow-up	Outcomes measured
Citations published between 1990 and June 2013	In-hospital or short-term mortality
	Change in transfusion practice identified by a change in transfusion ratios or volume of PRBCs and the usage of PRBCs and FFP

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Moderate

Description: More than one non-critical weakness – the systematic review has more than one weakness but no critical flaws. It *may* provide an accurate summary of the results of the available studies that were included in the review. *Risk of bias of included studies:* The review authors did not make a judgement on the overall risk of bias for included studies studies. It was mentioned that only 1 out of 8 included studies (Shaz 2010) used prospectively collected data in the intervention group. Baseline demographics was comparable across the group except for Cotton 2009 (higher ISS

score) and Simmons 2010 (higher Hb).

RESULTS:					
Outcome No. patients (No. trials)	Post-MTP n/N (%) Mean ± SD	Pre-MTP n/N (%) Mean ± SD	Risk estimate (95% CI)	Statistical significance p-value Heterogeneity ^a I ² (p-value)	
Post-MTP versus pre-MTP					
Mortality at 30 days N = 1586 (8 studies)	NR	NR	Pooled OR 0.73 (0.48, 1.11)	No significant difference p = 0.14 Substantial heterogeneity	
Riskin 2009 (N = 77) Cotton 2009 (N = 264)	7/37 (19) 54/125 (43.2)	18/40 (45) 88/141 (62.4)	OR 0.29 (0.10, 0.80) OR 0.32 (0.19, 0.52)	12 = 63.8% (p = 0.007)	

STUDY DETAILS: Mitra 2	013			
O'Keefe 2008 (N = 178)	69/132 (52.3)	23/46 (50)	OR 1.10 (0.56, 2.14)	
Shaz 2010 (N = 224)	63/132 (47.7)	42/84 (50)	OR 1.10 (0.63, 1.89)	
Simmons 2010 (N = 777)	81/426 (19.0)	84/351 (23.9)	OR 0.75 (0.53, 1.05)	
Dirks 2010 (N = 66)	47/156 (30.1)	24/97 (24.7)	OR 1.21 (0.41, 3.61)	
Sisak 2012 (N = 58)	13/28 (46.4)	12/30 (40)	OR 1.30 (0.46, 3.68)	
Sinha 2013 (N = 152)	24/83 (28.9)	16/69 (23.2)	OR 0.77 (0.16, 3.75)	
Transfusion volumes				
(intra-operative PRBC, FFP,				
platelets)	NR	NR	NR	Favours comparator
Cotton 2009 (N = 264)				p = NR
Transfusion volumes				
(post-operative PRBC, FFP,				
platelets)	NR	NR	NR	Favours intervention
Cotton 2009 (N = 264)				<i>p</i> = NR
Transfusion volumes				
(PRBC)				
O'Keefe 2008 (N = 178)	11.8 ± 11.8 (132)	15.5 ± 15.5 (46)	NR	Favours intervention,
Riskin 2009 (N = 77)	20.5 ± 2.6 (37)	23.9 ± 2.7 (40)	NR	p = NR
Simmons 2010 (N = 777)	17 ± 12 (426)	19 ± 11 (351)	NR	Favours intervention,
Shaz 2010 (N = 224)	24 ± 14 (132)	23 ± 23 (84)	NR	<i>p</i> = NR
Dirks 2010 (N = 66)	NR	NR	NR	Favours comparator,
Sisak 2012 (N = 152)	19.8 ± 8.5 (28)	19.6 ± 9.7 (30)	NR	p = NR
				No difference,
				p = NR
Transfusion volumes				
(FFP)				
Riskin 2009 (N = 77)	10.7 ± NR	12.3 ± NR	NR	No difference,
Sisak 2012 (N = 58)	9.4 ± 5.8 (132)	8.1 ± 6.2 (30)	NR	p = NR
O'Keefe 2008 (N = 178)	5.7 ± 5.4 (132)	8.7 ± 6.9 (46)	NR	Favours intervention,
Simmons 2010 (N = 777)	8 ± 8 (426)	14 ± 11 (351)	NR	<i>p</i> = NR
Shaz 2010 (N = 224)	13 ± 12 (132)	8 ± 7 (84)	NR	Favours comparator,
Dirks 2010 (N = 66)	NR	NR	NR	p = NR
Sinha 2013 (N = 152)	NR	NR	NR	Favours comparator,
				p = NR
				Favours comparator, p = NP
				$\beta = NR$
				p = NR
Transfusion volumes				
(PLT)				
Riskin 2009 (N = 77)	2.3 ± NR	2.8 ± NR	NR	No difference,
Shaz 2010 (N = 224)	2 ± 2 (132)	2 ± 1 (84)	NR	<i>p</i> = NR
O'Keefe 2008 (N = 178)	1.1 ± NR (132)	1.7 ± NR (46)	NR	Favours intervention,
Sisak 2012 (N = 58)	10.1 ± 6.5 (28)	5.8 ± 6.8 (30)	NR	p = NR
Dirks 2010 (N = 66)	NR	NR	NR	Favours comparator,
Sinha 2013 (N = 152)	NR	NR	NR	p = NR
Simmons 2010 (N = 777)	1 ± 2 (426)	2 ± 3 (351)	NR	Favours comparator,
	Median (range)	Median (range)		p = NR
Dirks 2010	0 (0-0)	1 (0-4)	NR	⊢avours comparator,
Sinha 2013	3 (2-4)	2 (1-3)	NR	µ ≁ יות

STUDY DETAILS: Mitra 2013 Favours comparator, p = NRp = NRp = NRTime to delivery of blood products (3 studies) Riskin 2009 (N = 77) NR NR NR Favours intervention, O'Keefe 2008 (N = 178) p = NRND ND NR Dirks 2010 (N = 66) Favours intervention, NR NR NR p = NRFavours intervention, p = NR

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population with some caveats. The review does not provide descriptions of the setting for each included study.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats. The review does not provide descriptions of the setting for each included study.

Additional comments

Authors conclusions:

All studies were of low quality with varied definitions, and although involving 1586 trauma patients who underwent massive transfusions, there was no clear demonstration of improved patient outcomes.

Included studies:

Riskin 2009, Cotton 2009, O'Keefe 2008, Shaz 2010, Simmons 2010, Dirks 2010, Sisak 2012, Sinha 2013

Cl, confidence interval; FFP, fresh frozen plasma; Hb, haemoglobin; ISS, injury severity score; ITT, intention-to-treat; MD, mean difference; MTP, massive transfusion protocol; NR, not reported; OR, odds ratio; PLT; platelet, PTL; PP, per-protocol; PRBC, packed red blood cells; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Cannon 2017

Citation

Cannon, J.W., Khan, M.A., Raja, A.S., Cohen, M.J., Como, J.J., Cotton, B.A., Dubose, J.J., Fox, E.E., Inaba, K., Rodriguez, C.J. and Holcomb, J.B., 2017. Damage control ResusCitation in patients with severe traumatic haemorrhage: a practice management guideline from the Eastern Association for the Surgery of Trauma. *Journal of Trauma and Acute Care Surgery*, 82(3), pp.605-617.

Affiliation/Source of funds

The author declares no conflict of interest. Author Bryan A. Cotton is a consultant, Haemonetics Corporation. Source of funding not disclosed

Study design	Level of evidence	Location	Setting		
Systematic review of RCTs and cohort studies	1-111	Not specified	Trauma		
Intervention		Comparator			
PICO 1: MHP (referred to as MT/DCR)		PICO 1: no MHP			
Developing the second site					

Population characteristics

Patients with severe trauma at risk of death from haemorrhage, defined as patients requiring blood transfusions and/or injury severity score greater than 25.

PICO 1: 11 retrospective studies

STUDY DETAILS: Cannon 2017

(Nascimento 2013, Campion 2014, Duchesne 2010, Cotton 2009, O'Keeffe 2008, Riskin 2009, Shaz 2010, Kahn 2013, Cotton 2011, fox 2008, Cinat 1999)

Length of follow-up	Outcomes measured
Databases searched: PubMed, Medline, Embase	Mortality (in hospital or 30 day)
Search dates: Jan 1985 through December 2015	Blood products used (RBC in 24 hours)

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Moderate

Description: More than one-critical weakness – the systematic review has more than one weakness but no critical flaws. It may provide an accurate summary of the results of the available studies that were included in the review. *Risk of bias of included studies:* Study identified 11 studies for inclusion however only 7 were included in meta-analysis. All included studies were relatively small retrospective studies at serious risk of bias. The outcome of blood products

used is at serious risk of inconsistency, indirectness, and imprecision. Study reported study heterogeneity

RESULTS:

Outcome No. trials (No. patients)	MHP n/N (%) Mean ± SD	No MHP n/N (%) Mean ± SD	Risk estimate (95% Cl)	Statistical significance p-value Heterogeneity p-value (l²)
MHP/DCR versus no MHP/D	DCR			
Mortality (In hospital or 30 day) N = 1149 6 retrospective studies Campion 2013 (N = 216) Cotton 2009 (N = 166 Duchesne 2010 (N = 196) O'Keeffe 2008 (N = 178) Riskin 2009 (N = 77) Shaz 2010 (N =216)	239/597 (40.0) 27/99 (27.3) 54/125 (43.2) 19/72 (26.4) 69/132 (52.3) 7/37 (18.9) 63/132 (47.7)	269/552 (48.7) 42/117 (35.9) 88/141 (62.4) 56/124 (45.2) 23/46 (50) 18/40 (45) 42/84 (50)	RR 0.614 (0.43, 0.87) AR 120 fewer per 1000 (from 35 to 197 fewer) 0.67 (0.37, 1.20) 0.46 (0.28, 0.75) 0.44 (0.23, 0.82) 1.10 [0.56, 2.14] 0.29 [0.10, 0.80] 0.91 [0.53, 1.58]	Favours intervention p = 0.006 Moderate heterogeneity l ² = 48% (p = 0.09)
Blood products used (units of RBC/24 hours) N = 511 4 retrospective studies Fox 2008 (N = 40) O'Keeffe 2008 (N = 178) Riskin 2009 (N = 77) Shaz 2010 (N = 216)	(n = 317) 23 ± 18 (16) 11.8 ± 11.8 (132) 20.5 ± 2.6 (37) 24 ± 14 (132)	(n = 194) 12 ± 6.4 (24) 15.5 ± 15.5 (46) 23.9 ± 2.7 (40) 23 ± 14 (84)	MD -0.36 (-4.54, 3.83) 11.00 [1.82, 20.18] -3.70 [-8.61, 1.21] -3.40 [-4.58, -2.22] 1.00 [-4.54, 3.83]	No significant difference p = 0.87 Substantial heterogeneity $1^2 = 78\%$ ($p = 0.004$)

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

Overall, study population is generalisable to the guideline's population. Fox 2008 was conducted in military patients and results may not be generalisable to the greater population, particularly the outcome of blood products used.

Applicability (relevance of the evidence to the Australian health care system)

Study is applicable to the Australian health care system. Except for the Fox 2008 study which was conducted in a military hospital, other included studies were conducted in civilian hospitals. Considerable variability in the MTPs described in terms of products provided and ratios.

Additional comments

Authors conclusions

In adult patients with severe trauma, we recommend the use of a massive transfusion/damage control resuscitation protocol in comparison to no protocol to reduce mortality.

Included studies

STUDY DETAILS: Cannon 2017

Nascimento 2013, Campion 2014, Duchesne 2010, Cotton 2009, O'Keeffe 2008, Riskin 2009, Shaz 2010, Kahn 2013, Cotton 2011, Fox 2008, Cinat 1999

AR, absolute risk; CI, confidence interval; DCR; damage control resuscitation; ITT, intention-to-treat; MD, mean difference; MHP; Major haemorrhage protocol; MT, major transfusion; PP, per-protocol; RBC, red blood cell; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation

STUDY DETAILS: Maw 20	18					
Citation						
Maw, G., Furyk C., 2018. Pediatric Massive Transfusion. A Systematic Review. Pediatr Emer Care, 34, pp.594-598.						
Affiliation/Source of funds						
The authors declare no confl	ict of interest.					
The authors are affiliated wit	h the Australasian College for	Emergency Medicine (G.M.); an	nd Australian and New			
Zealand College of Anaesthe	tists (C.F.) in Melbourne, Austr	alia.				
Study design	Level of evidence	Location Setting				
SR of nonrandomised trials	1-111	US, Iraq and Afghanistan	Trauma, surgical			
including 3 retrospective						
analyses and one non-						
study						
Intervention		Comparator				
Chidester 2012 – uncrossmat	ched blood via MTP	Chidester 2012 – uncrossmate	ched blood at physician			
Hendrickson 2012 - MTP desi	gned for 5 different weight	discretion				
ranges	5	Hendrickson 2012 - Blood pro	oducts at physician discretion			
Nosanov 2013 – Iow, medium	or high ratios of platelets to	(not described)				
RBCs Nosanov 2013 – low, medium or high ratios of plasma to						
Edwards 2015 – higher doses of FFP to RBCs and high volume of crystalloid Edwards 2015 – comparison at varying doses			at varying doses			
Population characteristics		· · ·				
Paediatric patients (<18 years	s) with traumatic injury requiri	ng blood transfusion				
Relevant to this review						
Chidester 2012 – prospective of	cohort study (N = 55, duration 2	2009-2011) of paediatric patient	ts with trauma or surgical			
haemorrhage requiring bloo	d transfusion					
Hendrickson 2012 – retrospec	ctive cohort study with before	and after (N = 102) of paediatric	c patients with traumatic			
Not relevant to Ouestion 2 (r	not MTD vs no MTD)					
Nosanov 2013 – retrospective	analysis (N = 105) of paediatric	trauma natients				
Edwards 2015 – retrospective	analysis (N = 77) requiring ma	ssive transfusion) of paediatric	patients trauma patients			
Length of follow-up		Outcomes measured				
Databases searched: Cochra	ne Central Register of	30-day mortality				
Controlled Trials, Medline, EN	/BASE, Web of Science, the	Unnecessary transfusion including morbidity and waste				
Joanna Briggs Institute EBP	Database, CINAHL,	Avoidable complications including ICU days and				
AUSTHealth, grey literature b	by google search, clinical trial	ventilator days	5 5			
registries, relevant conference	e proceedings, hand search					
of reference lists from key trials						
the search run on February 29, 2016						
INTERNAL VALIDITY		1				
Overall QUALITY of the syst	ematic review (descriptive)					
Rating (AMTAR): Critically low	N					
Description: More than one c	critical flaw with or without no	n-critical weaknesses – the revi	ew has more than one			
critical flaw and should not b	e relied on to provide an accu	rate and comprehensive sumn	nary of the available studies.			
Risk of bias of included studies: All four included studies were of very low quality. This assessment was based mainly						

on high risk of selection bias and lack of allocation concealment.

STUDY DETAILS: Maw 2018 **RESULTS:** Outcome [intervention] [comparator] **Risk estimate** Statistical significance (95% CI) n/N (%) n/N (%) No. patients p-value (No. trials) Mean ± SD Mean ± SD **Heterogeneity**^a I² (p-value) MTP versus No MTP Mortality (to hospital discharge) 20/53 (38) 11/49 (23) NR No significant difference Hendrickson 2012 (n = 102) 15/33 (45) 10/22 (45) NR No significant difference Chidester 2012 (n = 55) Ventilator days Hendrickson 2012 (n = 102) Median = 2 days Median = 6 days NR NR ICU days Hendrickson 2012 (n = 102) Median = 7 days Median = 9 days NR NR (n = 49) (n = 53)

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population with some caveats. Edwards 2015 was a retrospective review of 1300 injured children presenting to US military hospitals in Afghanistan and Iraq via a trauma database.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is not applicable to the Australian healthcare context. The reviewer's state there is variability in the definition of massive transfusion in children. Additionally, the definition of MTP used in the studies in not clear.

Additional comments

Authors conclusions:

There is little evidence for improved outcomes using component-based transfusion in a rigid 1:1:1 strategy in children. A goal-directed approach using viscoelastic haemostatic assay–guided treatment with early institution of tranexamic acid and fibrinogen replacement is considered the way forward. This recommendation is based upon very low-quality evidence.

Included studies:

Hendrickson 2012, Chidester 2012, Edwards 2015, Nosanov 2013

21 further articles were deemed relevant but are not listed individually.

Cl, confidence interval; Coh, cohort; FFP, fresh frozen plasma; ICU, intensive care unit; ITT, intention-to-treat; MD, mean difference; MTP, massive transfusion protocol; NR, not reported; PP, per-protocol; RBC, red blood cell; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation; SR, systematic reveiw

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet > 0.1 and I2 < 25%; (ii) mild heterogeneity if I2 < 25%; moderate heterogeneity if I2 between 25–50%; substantial heterogeneity I2 > 50%.

STUDY DETAILS: Sommer 2019

Citation

Sommer, N., B. Schnüriger, D. Candinas and T. Haltmeier (2019). "Massive transfusion protocols in non-trauma patients: A systematic review and meta-analysis." *Journal of Trauma and Acute Care Surgery* 86(3): 493-504.

Affiliation/Source of funds

The authors declared no conflicts of interest or financial ties.

Study design	Level of evidence	Location	Setting
SR and MA of observational studies	I-III (included all retrospective studies)	NR all single centre studies except Chay 2016, which was a multicentre study	Mixed trauma and non-trauma Non-trauma patients including: Perioperative Gastrointestinal bleeding Obstetric Vascular emergencies

STUDY DETAILS: Som	mer 2019					
Intervention			Compa	rator		
Massive transfusion proto	ocol (MTP)		Non-MT	P (off protocol)		
Population characteristi	cs					
Adult (18 years or older) n	on-trauma patients w	ith massive b	leeding			
12 included studies with 2	475 patients in total a	and 1620 non-	trauma	patients, majority ma	ale (64.4 to 87.1%) except	
studies with obstetric patients only. Age 29.9 to 73.0 years						
7 studies included both ti	rauma and non-traur	na patients:				
Bauman Kreuziger 201 obstetric, 1.6% thrombo	4: 50% trauma, 18% va osis, 1% orthopaedic, 4	ascular ruptur 4% other	e, 13% G	I bleeding, 9% cardio	thoracic surgery, 4%	
Balvers 2015: 63% surge	ery, 13% internal Medi	cine, 11% other	r, 9% tra	uma, 4% obstetric		
Chay 2016: 39% trauma	a, 30% major surgery, 2	25% GI bleedir	ng, 6% o	bstetric,		
McDaniel 2013: 61% tra vascular emergencies,	uma, 13% GI bleeding, 0.6% cerebral haemo	, 4% medical k rrhage	bleeding	ı, 11% postsurgical/pro	ocedural complications, 11%	
Morse 2012: 92% traum	a, 4% GI bleeding, 3%	intraoperativ	e bleedi	ng, 15 obstetrics, 0.2%	6 ruptured AAA	
Sinha 2013: 24% traum cardiac surgery, 3% live	a, 20% ruptured AAA, er transplantation	19% surgery o	other tha	ın cardiac, 15% GI blee	eding, 11% obstetrics, 8%	
Wijaya 2016: 61% traum intraoperative bleeding	na, 26% GI bleeding, 6. g, 2% postoperative b	5% ruptured A leeding	4AA, 2%	ruptured splenic arte	ery aneurysm 2%	
5 studies included non-tr	auma patients only:					
Dutta 2017: 100% obste	etric					
Goodnough 2011: 100%	obstetric					
Gutierrez 2012: 100% oł	ostetric					
Johansson 2007: 100%	ruptured AAA					
Martinez-Calle 2016: 29	% oncologic surgery,	34.5% cardiov	ascular	surgery, 19% other su	rgery, 18% nonsurgical	
Length of follow-up			Outcon			
All included studies were	nublished between 2	007 and	24-bour	mortality		
2017. However, this was n	ot stated as a pre-spe	cified	30-davu	mortality		
search filter.			Blood n	roduct transfusion in	cluding number of packs	
Searched PubMed only.			and trai	nsfusion ratios		
			Wastag	e of blood products		
			Overact activatio	ivation of MTP (prope on who received <10 (ortion of patients with MTP units of PRBC)	
INTERNAL VALIDITY						
Overall QUALITY of the s	systematic review (de	escriptive)				
Rating (AMSTAR): Critical	ly low					
Description: More than or	ne critical flaw with or	without non-	-critical	weaknesses – the rev	iew has more than one	
critical flaw and should ne	ot be relied on to prov	/ide an accura	ate and o	comprehensive sumr	mary of the available studies.	
Risk of bias of included st	udies: Overall, the rev	riew authors c	onsider	ed the quality of inclu	uded studies to be fair to	
poor. Three studies analysed a mixed cohort of non-trauma and trauma patients. None of the included studies used a matched Study design or adjusted for confounders.						
RESULTS:						
Outcome	МТР	Non-MTP		Risk estimate	Statistical significance	
No. patients	n/N (%)	n/N (%)		(95% CI)	<i>p</i> -value	
(No. trials)	Mean ± SD	Mean ± SD			Heterogeneity ^a	
					l² (p-value)	

MTP versus non-MTP							
/257	13/173	OR 0.42 (0.01, 16.62)	No significant difference				
			p = 0.65				
			Substantial heterogeneity				
/26 (30.8)	6/38 (15.8)	OR 2.37 (0.71, 7.92)	l² = 89% (p = 0.002)				
208 (0.5)	7/96 (7.3)	OR 0.06 (0.01, 0.51)					
/	257 26 (30.8) 208 (0.5)	257 13/173 26 (30.8) 6/38 (15.8) 208 (0.5) 7/96 (7.3)	257 13/173 OR 0.42 (0.01, 16.62) 26 (30.8) 6/38 (15.8) OR 2.37 (0.71, 7.92) 208 (0.5) 7/96 (7.3) OR 0.06 (0.01, 0.51)				

STUDY DETAILS: Som	mer 2019			
Dutta 2017	0/23 (0)	0/39 (0)	Not estimable	
Chay 2016	52/347 (15.0)	23/192 (12.0)	1.22 (0.77, 1.93)	p = 0.386
Wijaya 2016	NR	NR		
Balvers 2015	52/355 (15)	23/192 (12)		
B-Kreuziger 2014	NR	NR		
Sinha 2013	NR	NR		
Morse 2012	15/37 (41.0%)	NA		
Gutierrez 2012	NR	NR		
Goodnough 2011	NR	NR		
Johansson 2007	NR	NR		
30-day mortality	63/307	91/255	OR 0.56 (0.30, 1.07)	No significant difference
N = 562				p = 0.08
(4 Coh)				Moderate heterogeneity
Johansson 2007	17/50 (34)	46/82 (56)	OR 0.40 (0.19, 0.84)	² = 55% (p = 0.11)
McDaniel 2013	13/26 (50.0)	16/38 (42.1)	OR 1.38 (0.50, 3.75)	
Martinez-Calle 2016	33/208 (15.9)	29/96 (30.2)	OR 0.44 (0.25, 0.77)	
Dutta 2017	0/23 (0)	0/39 (0)	Not estimable	
Balvers 2015	124/355 (35)	65/192 (34)	1.03 (0.81, 1.32)	p = 0.801
Chay 2016	NR	NR		
Wijaya 2016	NR	NR		
B-Kreuziger 2014	NR	NR		
Sinha 2013	NR	NR		
Morse 2012	18 (49.0)	NA		
Gutierrez 2012	NR	NR		
Goodnough 2011	NR	NR		
PRBC transfusion	Median (IQR)	Median (IQR)		
volume, Units				
Dutta 2017	7 (5-9) (n = 23)	6 (5–8) (n = 39)	NR	No difference, $p = 0.85$
Martinez-Calle 2016	12 (8–13), 10 (8–12)	9 (8–14)		No difference, $p = 0.963$
Balvers 2015	8 (7–13) (n=355)	8 (6–12) (n = 192)	NR	No difference, $p = 0.279$
Sinna 2013	14 (11–21) (n=83)	16 (12–20) (n = 69)	NR	NR Na difference ND
Johansson 2007	NR	NR		No difference, NR
Johansson 2007	2 (0-30)	6 (0-54)	ND	Favours MTP $p < 0.05$
(intensive care unit)	2 (0 50)			1 avours mrr, p < 0.05
	Mean	Mean		
McDaniel 2013	12.6 ± 11.5 (n = 26)	12.2 ± 9.0 (n = 38)	NR	No difference, p = 0.864
FFP transfusion volume.	Median (IOR)	Median (IOR)		
units				
Dutta 2017	2 (0-4)	4 (1–5)	NR	No difference, p = 0.28
Martinez 2016	5(4–9), 5 (3–9)	5 (3–9)	NR	No difference, p = 0.376
Balvers 2015	6 (4–11)	6 (3–9)	NR	No difference, p = 0.224
Sinha 2013	10 (7–17)	6 (5–10)	NR	NR
Johansson 2007	4 (2–16)	0 (0–3)	NR	Favours non-MTP, p < 0.05
(operating room)				
Johansson 2007	0 (0–4)	1 (0–6)	NR	Favours MTP, p < 0.05
(intensive care unit)				
	Mean	Mean		
McDaniel 2013	9.2 ± 8.0 (n = 26)	8.9 ± 8.7 (n = 38)	NR	No difference, p = 0.631

STUDY DETAILS: Sommer 2019					
PLT transfusion volume,	Median (IQR)	Median (IQR)			
units					
Dutta 2017	0 (0–0.6)	0 (0–0.6)	NR	No difference, p = 0.63	
Martinez 2016	1 (0–2), 1 (0–2)	1 (0–2	NR	No difference, p = 0.751	
Balvers 2015	2 (0–4)	2 (1–3)	NR	No difference, p = 0.139	
Sinha 2013	3 (2–4)	2 (1–3)	NR	NR	
Johansson 2007 (operating room)	11 (2–42)	7 (0–46)	NR	Favours non-MTP, p < 0.05	
Johansson 2007 (intensive care unit)	2 (0–12)	4 (0–32)	NR	Favours MTP, p < 0.05	
	Mean	Mean			
McDaniel 2013	7.2 ± 6.7 (n = 26)	6.5 ± 8.6 (n = 38)	NR	No difference, p = 0.183	
Wastage of pRBC				No significant difference	
McDaniel 2013	3/613 (0.5)	3/848 (0.35)	1.38 (0.28, 6.83)	p = 0.700	
Wastage of FFP				No significant difference	
McDaniel 2013	1/406 (0.25)	4/553 (0.72)	0.34 (0.04, 3.04)	p = 0.403	
Wastage of PLT				Favours non-MTP	
McDaniel 2013	39/304 (12.8)	29/358 (8.1)	1.58 (1.00, 2.50)	p = 0.46	
FFP time to delivery,	Median (IQR)	Median (IQR)	NR	Favours MTP	
minutes				p = 0.009	
McDaniel 2013	1.0 (0.0-2.0)	8.0 (0.0-37.5)			
PLT time to delivery,	Median (IQR)	Median (IQR)	NR	Favours MTP	
minutes				p = 0.010	
McDaniel 2013	7.0 (0.0-15.0)	24.0 (9.0-96.0)			
Overactivation of MTP					
Wijaya 2016	28/46 (60.8)	NA	NA	NA	
B- Kreuziger 2014	41/63 (65)	NA			
McDaniel 2013	14/26 (53.8)	NA			
Morse 2012	20/37 (54)	NA			

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian healthcare context with few caveats, depending on the differences in TTP used in Australia.

Additional comments

Authors conclusions:

The review authors conclude that there is limited evidence that the implementation of MTP may be associated with decreased mortality in non-trauma patients. However, due to the high heterogeneous patient characteristics and definition of MTP in the studies, further prospective investigation is warranted.

List of relevant included studies:

Balvers 2015, Bauman Kreuziger 2014, Chay 2016, Dutta 2017, Goodnough 2011, Gutierrez 2012, Johansson 2007, Martinez 2016, McDaniel 2013, Morse 2012, Sinha 2013, Wijaya 2016

AAA, abdominal aortic aneurysm; CI, confidence interval; Coh, cohort study; FFP, fresh frozen plasma; GI, gastrointestinal; IQR, interquartile range; ITT, intention-to-treat; MD, mean difference; MTP, massive transfusion protocol; NA, not applicable; NR, not reported; OR, odds ratio; PLT, platelets; PP, per-protocol; PRBC, packed red blood cells; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation; SR, systematic review

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

b. The MTP implemented in Martinez-Calle 2016 was updated during the study period (MTP 1: 2007–2009 and MTP 2: 2010–2012). The p-value is pre-MTP vs MTP 1 vs MTP2

STUDY DETAILS: Consunji 2020 Citation Consunji R, Elseed A, El-Menyar A, Sathian B, Rizoli S, Al-Thani H & Peralta R. The effect of massive transfusion protocol implementation on the survival of trauma patients: a systematic review and meta-analysis. Blood Transfusion. 2020; 18.434-435 Affiliation/Source of funds Details on funding not provided. The authors declared no conflicts of interest. Author affiliations: RC, AE, AEM, SR, HAT & RP affiliated with the Department of Surgery, Section of Trauma Surgery, Hamad General Hospital, Doha, Qatar. AEM & BS affiliated with Department of Clinical Research, Hamad General Hospital, Doha, Qatar. AEM affiliated with Clinical Medicine, Weill Cornell Medical College, Doha, Qatar. RP affiliated with Department of Surgery, Universidad Nacional Pedro Henriquez Urena, Santo Domingo, Dominican Republic. Study design Level of evidence Location Settina SR and MA of observational |-||| Most studies in the US. One Trauma studies (17) study multicentre. Intervention Comparator Trauma patients receiving or anticipated to receive Trauma patients receiving or anticipated to receive massive blood transfusion via MTP massive blood transfusion via no MTP **Population characteristics** Cotton 2009, Dirks 2010, Hwang 2018, Nunn 2017, O'Keeffe 2008, Riskin 2009, Shaz 2010, Sinha 2013, Sisak 2012, van der Meij 2019 focused exclusively on civilian patients with haemorrhage requiring massive transfusion. Sinha 2013 included both trauma and non-trauma patients (mortality of trauma reported separately). Simmons 2010 exclusively analysed military personnel with haemorrhage requiring massive transfusion. Length of follow-up **Outcomes measured** Databases searched: Medline, PubMed, Google Scholar Mortality (overall, 24-hour and 30-day) and Cochrane Library. Citations published between 1 January 2008 and 30 June 2019 **INTERNAL VALIDITY Overall QUALITY of the systematic review (descriptive)** Rating (AMSTAR): High Description: No or one non-critical weakness - the systematic review provides an accurate and comprehensive summary of the results of the available studies that address the question of interest. Risk of bias of included studies: All studies were of moderate quality based on GRADE criteria. Risk of bias was reported as not serious for all included studies. There was no evidence of publication bias for the included studies. **RESULTS:** Outcome Post-MTP Pre-MTP Odds ratio (95% CI) Statistical significance No. patients n/N (%) n/N (%) p-value Trials **Heterogeneity**^a I² (p-value) Post-MTP versus pre-MTP 542/1799 (30.1) 542/1402 (38.7) OR 0.71 (0.56, 0.90) Overall mortality Favours intervention 14 studies; N = 3201 p = 0.04Moderate heterogeneity $|^2 = 44\%$ Brinck 2016 35/206 (16.9) 39/146 (26.5) OR 0.56 (0.34, 0.94) p = 0.032Hwang 2018 43/126 (34.1) 35/64 (54.7) OR 0.48 (0.26, 0.88) p = 0.007Maciel 2015 9/17 (53) 25/29 (86) OR 0.23 (0.06, 0.91) p = 0.03Noorman 2016 10/144 (7) 13/57 (23) OR 0.25 (0.10, 0.62) p = 0.002Riskin 2009 7/37 (19) 18/40 (45) OR 0.29 (0.00, 0.80) p = 0.02Cotton 2009 54/125 (43.2) 88/141 (62.4) OR 0.46 (0.28, 0.75) p = 0.185Dirks 2010 47/156 (30.1) 24/97 (24.7) OR 1.31 (0.74, 2.33) p = 0.382O'Keeffe 2008 69/132 (52.3) 23/46 (50.0) OR 1.10 (0.56, 2.14) p = NRNunn 2017 83/208 (40.1) 113/239 (47.2) OR 0.77 (0.53, 1.12) p = 0.1732

STUDY DETAILS: Consunji 2020 Shaz 2010 63/132 (48) 42/84 (50) OR 0.91 (0.53, 1.58) p = 0.47Simmons 2010 81/426 (19) 84/351 (23.9) OR 0.75 (0.53, 1.05) p = 0.11516/69 (23) Sinha 2013 24/83 (29) OR 0.77 (0.16, 3.75) p = 0.43Sisak 2012 12/30 (40) p = 0.79113/28 (46) OR 1.30 (0.46, 3.68) van der Meij 2019 14/47 (29.8) 16/54 (29.6) OR 1.16 (0.53, 2.58) p = 0.9924-hour mortality 131/608 (21.5) 122/412 (29.6) OR 0.81 (0.57, 1.14) No significant difference 6 studies; N = 1020 p = 0.32Mild heterogeneity $I^2 = 15\%$ Noorman 2016 3/144 (2) 6/57 (11) OR 0.18 (0.04, 0.75) p = 0.004Cotton 2009 39/125 (31) 55/141 (39) OR 0.71 (0.43, 1.18) p = 0.185O'Keeffe 2008 27/132 (20.5) 9/46 (19.6) p > 0.05OR 1.06 (0.46, 2045) Shaz 2010 38/142 (29) 27/84 (32) OR 0.85 (0.47, 1.54) p = 0.28Sisak 2012 10/28 (35.7) 9/30 (30) OR 1.30 (0.43, 3.89) p = 1.00van der Meij 2019 14/47 (29.8) 16/54 (29.6) OR 1.01 (0.43, 2.37) p = 0.99199/620 (32.1) 30-day mortality 193/469 (41.1) OR 0.73 (0.46, 1.16) Favours intervention 4 studies; N = 1089 p = 0.03Substantial heterogeneity $l^2 = 67\%$ Brinck 2016 35/206 (16.9) 39/146 (26.5) OR 0.56 (0.34, 0.94) p = 0.032Cotton 2009 54/125 (43.2) 88/141 (62.4) OR 0.46 (0.28,0.75) p = 0.001Dirks 2010 47/156 (30.1) 24/97 (24.7) OR 1.31 (0.74, 2.33) p = 0.382Shaz 2010 63/132 (48) 42/84 (50) OR 0.91 (0.53, 1.58) p = 0.47

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population with some caveats. Majority of the included studies were conducted in civilian trauma patients which is applicable to the Australian population.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats. Almost all studies were conducted in civilian trauma patients, of which most were in the US. Findings could be appropriately translated to the Australian healthcare context.

Additional comments

Authors conclusions:

The implementation of a MTP is shown to provide a statistically and clinically significant reduction in the overall mortality of trauma patients. It is recommended that all centres providing care to severely injured bleeding patients have a MTP in place.

Included studies:

Brinck 2016, Cotton 2009, Dirks 2010, Hwang 2018, Maciel 2015, Noorman 2016, Nunn 2017, O'Keeffe 2008, Riskin 2009, Shaz 2010, Simmons 2010, Sinha 2013, Sisak 2012, van der Meij 2019

Cl, confidence interval; MA, meta-analysis MTP, massive transfusion protocol; NR, not reported; OR, odds ratio; SR, systematic review; US, United States

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Kinslow 2020

Citation

Kinslow K, McKenney M, Boneva D, Elkbuli A. Massive transfusion protocols in paediatric trauma population: a systematic review. Transfusion Medicine. 2020; 30: 333-342.

Affiliation/Source of funds

Details on funding are not provided. The authors declared no conflicts of interest.

Author affiliations: All authors affiliated with the Department of Surgery, Kendall Regional Medical Center, Miami, Florida. MM and DB affiliated with the University of South Florida, Tampa, Florida.

STUDY DETAILS: Kinslow 2020					
Study design	Level of evide	nce	Locatio	on	Setting
SR of observational stud (33)	dies I-III		US		Paediatric trauma
Intervention			Compa	arator	
MTP (activation criteria discretion)	for all studies, physici	an	No MT	Þ	
Population characteris	tics		1		
Paediatric trauma patie	ents with various iniur	v severity scor	es.		
One study (Edwards 2015) in combat population with predominately penetrative trauma. All other studies had					
majority blunt trauma.					
Length of follow-up			Outco	mes measured	
Databases searched: Pu	ıbMed, Google Schola	ır, Cochrane	Mortali	ity	
Library, Embase, Wiley	Online Library and OV	/ID.			
No restrictions on date	of publication were in	icluded.			
Authors do not provide	details of search date	s (e.g.			
Overall OUALITY of the	systematic review (descriptive)			
Dating (AMSTAD): Critic		descriptivej			
Description: More than	one critical flaw with	or without por	o-critical	weaknesses - the rev	view has more than one
critical flaw and should	not be relied on to pr	ovide an accui	rate and	comprehensive sum	mary of the available studies.
Risk of bias of included	studies: No risk of bia	s for included	studies	was performed. Autho	ors acknowledge limitations
of individual studies, pri	marily differences in	definitions in r	nassive t	transfusion in paediat	ric patients.
RESULTS:					
Outcome	[intervention]	[comparato	r]	Risk estimate	Statistical significance
No. patients	n/N (%)	n/N (%)		(95% CI)	<i>p</i> -value
(No. trials)	Mean ± SD	Mean ± SD			Heterogeneity ^a
					I ⁻ (p-value)
Martality	(Ζ μοζ (/1 Ξ)	75/07 (761)			n - 0.79 b
A studies N = 328	43/103 (41.7)	35/97 (30.1)		OR 1.51 (0.71, 2.42)	p = 0.30 $l^2 = 5\% (n = 0.35)^{b}$
Chidester 2012	15/33 (45)	10/22 (45)		100 (0 34 2 95) ^b	No significant difference
Hendrickson 2012	20/53 (38)	11/49 (23)		2.09 (0.88, 5.00) ^b	No significant difference
Hwu 2016	8/17 (47.1)	14/26 (53.8)		0.76 (0.22, 5.29) ^b	No significant difference
Thromboembolic	NR	NR		NR	NR
events					Higher rates in the no-MTP
1 study, N = 55					group compared to the
Chidester 2012					MTP group
Time to first	NR	NR		NR	NR
transfusion					
3 studies, N = 328					Significant decrease in time
Chidester 2012					to first transfusion observed
Hendrickson 2012					In the MTP group
Hwu 2016					
Ventilator days	NR	NR		NR	NR
2 studies, N = 273					
Hendrickson 2012					No significant difference
HWU 2016					NO SIGNIFICANT difference
ICU Days	NR	NR		NR	NR
2 studies, N = 2/3					No significant difference
Hendrickson 2012					ino significant difference

STUDY DETAILS: Kinslow 2020 Hwu 2016 No significant difference **EXTERNAL VALIDITY** Generalisability (relevance of the study population to the Guidelines target population) The evidence is not directly generalisable to the Australian population and it is hard to judge whether it is sensible to apply. Authors do not provide sufficient details regarding individual study findings making it difficult to confidently apply to the Australian population. Applicability (relevance of the evidence to the Australian health care system) The evidence is not applicable to the Australian healthcare context. Authors do not provide details of study locations or sufficient details regarding individual study findings making it difficult to confidently apply to the Australian healthcare context. Additional comments Identifies same studies as Kamyszek 2019. Authors conclusions: Existing evidence trends in the direction of supporting balanced approaches in paediatric populations. This review is a narrative review only with a lack of individual study data limiting the ability to make sound conclusions. Included studies: Chidester 2012, Hendrickson 2012, Hwu 2016 CI, confidence interval; ICU, intensive care unit; MTP, massive transfusion protocol; NR, not reported; SD, standard deviation; SR, systematic review: US. United States a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%. b. Calculated post-hoc using RevMan 5.3 STUDY DETAILS: Kamyszek 2019 Citation Kamyszek RW, Leraas HJ, Reed C, Ray CM, Nag UP, Poisson JL, Tracy ET. Massive transfusion in the pediatric population: A systematic review and summary of best-evidence practice strategies. J Trauma Acute Care Surg. 2019 Apr;86(4):744-754. doi: 10.1097/TA.000000000002188. PMID: 30629007. Affiliation/Source of funds The authors declare no conflict of interest and no funding for the systematic review. All authors are affiliated with Duke University in Durham, North Carolina. a

Study design	Level of evidence	Location	Setting	
SR of cohort studies and case series	I-IV/V	Not specified	Paediatric, Level I/II trauma centres	
Intervention		Comparator		
Post MHP (referred to as MTP)		Pre MHP implementation		

Population characteristics

Paediatric patients receiving MT. Included studies used 7 unique definitions of MT. Studies before 2015 used ≥one total blood volume (TBV) transfused within 24 hours, while studies since 2015 use the definition of >40 mL/kg total blood product within 24 hours.

Studies with pre MTP vs post MTP outcomes:

Hwu 2016 – retrospective review in single institution ACS Level I paediatric trauma centre, N = 43/235 receiving MT, patients <18 years, mean age 9 years

Chidester 2012 – prospective cohort study in single-institution Level I paediatric trauma centre, N = 22/55 receiving MT, patients aged 0 to 28 years with mean of 9.6 years

Hendrickson 2012 – retrospective review in single-institution Level II paediatric trauma centre, N = 53/102 receiving MT, patients aged <18 years with mean of 6.2 years

Length of follow-up	Outcomes measured
Database searched: PubMed, EMBASE, Web of Science	In-hospital Mortality
Search dates: January 1946 to December 2017	ICU
	Total length of stay

Articles restricted to human subjects and written in	Ventilator use
English language only	Time to administration of first blood product (RBC, FFP,
	PLT)

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Critically low

Description: More than one critical flaw with or without non-critical weaknesses – the review has more than one critical flaw and *should not be relied on* to provide an accurate and comprehensive summary of the available studies. *Risk of bias of included studies:* The review did not restrict included studies by Study design and thus included heterogenous group of studies. These included case reports and surveys. The review authors did not conduct an assessment of the risk of bias for the included studies.

RESULTS:				
Outcome	[intervention]	[comparator]	Risk estimate	Statistical significance
No. patients	n/N (%)	n/N (%)	(95% CI)	<i>p</i> -value
(No. trials)	Mean ± SD	Mean ± SD		Heterogeneity ^a
				l² (p-value)
Post MHP vs Pre MHP				
Mortality (In hospital)				No significant difference
3 studies (N = 200)				
Hwu 2016	8/17 (47.1%)	14/26 (53.8%)	NR	p = 0.729
Chidester 2012	15/33 (45%)	10/22 (45%)	NR	<i>p</i> > 0.05
Hendrickson 2012	20/53 (38%)	11/49 (23%)	NR	p = 0.10
Mortality (24-hour)				No significant difference
1 study (N = 43)				
Hwu 2016	6/17 (35.3%)	10/26 (38.5%)	NR	p = 0.994
Total LOS (days, mean)				No significant difference
1 study (N = 21)	N = 17	N = 26		
Hwu 2016	45.8 ± 30.9	39.0 ± 30.1	NR	p = 0.619
ICU LOS (days, mean)	6.0 ± 7.6	4.3 ± 5.8	NR	No significant difference
1 study (N = 43)	N = 17	N = 26		p = 0.330
Hwu 2016				
ICU LOS (days, median)	7.0	9.0	NR	No significant difference
1 study (N = 102)	N = 53	N = 49		p = 0.54
Hendrickson 2012				
Ventilator use (days)				No significant difference
2 studies (N = 145)				
Hwu 2016	8.3 (N = 17)	7.0 (N = 26)	NR	p = 0.584
Hendrickson 2012	2.0 free days (N = 53)	6.0 free days (N = 49)	NR	p = 0.27
Bleeding/thrombosis	0%	12%	NR	Favours intervention
1 study (N = 55)	N = 22	N = 33		p = 0.04
Chidester 2012				
Hours to first blood	(mean)	(mean)	NR	No significant difference
product				p = 0.688
1 study (N = 43)	0.9 (n = 17)	0.8 (n = 26)		,
Hwu 2016				
Hours to first RBC	(mean)	(mean)	NR	No significant difference
1 study (N = 43)				p = 0.180
Hwu 2016	1.4 (n = 17)	0.8 (n = 26)		
Hours to first FFP	(mean)	(mean)		Favours intervention
2 studies (N = 102)				
Hwu 2016	1.0 (n = 17)	2.7(n = 26)	NR	p = 0.005
Hendrickson 2012	0.8 (n = 53)	3.3 (n = 49)	NR	<i>p</i> < 0.001

Hours to first PLT	(mean)	(mean)	NR	No significant difference
1 study (N = 43)				p = 0.421
Hwu 2016	4.4 (n = 17)	6.0 (n = 26)		

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is not directly generalisable to the Australian population but could be sensibly applied. Includes studies with various definition of paediatric MT.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats. The SR does not provide the location for the included studies, however the included studies with relevant outcomes were conducted in single institution Level I or II paediatric trauma centres.

Additional comments

Authors conclusions:

A heterogeneous composite of 29 articles was included in the analysis. Current practices of paediatric MT demonstrate a variety of site-specific interventions with a persistently high mortality rate. Unfortunately, in aggregating these studies, the authors found that implementation of an MTP did not significantly reduce mortality or major morbidity. This paradox may be explained by the lack of adherence to protocol guidelines for blood product ratios in the paediatric studies reviewed, which could have mitigated expected mortality benefits.

Included studies:

Hwu 2016, Hendrickson 2012, Chidester 2012

Cl, confidence interval; FFP, fresh frozen plasma; ICU, intensive care unit; ITT, intention-to-treat; LOS, length of stay; MD, mean difference; MT, massive transfusion; MTP, massive transfusion protocol; PLT, platelets; PP, per-protocol; RBC, red blood cells; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation; SR, systematic review

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

Randomised controlled trials

No additional studies identified.

Observational / cohort studies

No additional studies identified.

E3 RBC ratios, timing, dose (Question 3)

Systematic reviews/meta-analyses

STUDY DETAILS: Tapia 2013 Citation Tapia, N. M., Suliburk, J., & Mattox, K. L. (2013). The initial trauma center fluid management of penetrating injury: a systematic review. Clinical orthopaedics and related research, 471(12), 3961–3973. doi:10.1007/s11999-013-3122-4 Affiliation/Source of funds Source of Funding: Details on funding not provided. Author affiliations: Baylor College of Medicine, Houston, USA Conflict of interest: The authors declared no conflicts of interest including possible conflicts of interest due to funding. Level of evidence Study design Location Setting SR of 20 observational 1-111 North America, Military and civilian studies with trauma patients studies (including 15 Europe and retrospective comparative Australia studies) Intervention Comparator Balanced ratios of blood transfusion according to Alternate blood volume resuscitation strategy damage control resuscitation principles **Population characteristics** Trauma patients with at least 30% penetrating injury who receive massive transfusion Length of follow-up **Outcomes measured** Databases: PubMed, Cochrane Library and Current Mortality **Controlled Trials Register** Citations published in the last 10 years prior to 2013 **INTERNAL VALIDITY Overall QUALITY of the systematic review (descriptive)** Rating (AMSTAR): Critically low Description: More than one critical flaw with or without non-critical weaknesses - the review has more than one critical flaw and should not be relied on to provide an accurate and comprehensive summary of the available studies. Risk of bias of included studies: The review does not comment on the risk of bias of included studies. Newcastle-Ottawa Scale (NOS) was used to assess the quality of studies and only the studies scoring 6 or more were included in the review. However, no further detail about the NOS or its scoring system was provided. **RESULTS:** Outcome **High ratio** Low ratio **Risk estimate** Statistical significance (95% CI) No. patients n/N (%) n/N (%) p-value (No. trials) Mean ± SD Mean ± SD **Heterogeneity**^a I² (p-value) High vs low FFP:RBC or Plt:RBC ratios Mortality (30 days) NR NR NR No meta-analysis performed 20 studies Higher ratios associated with improved mortality in all trauma patients 14 studies NR NR NR No significant difference after implementation of MTP with higher ratios 6 studies NR NR NR or comparing ratios retrospectively in all trauma patients **EXTERNAL VALIDITY** Generalisability (relevance of the study population to the Guidelines target population) The evidence is directly generalisable to the Australian population with some caveats. 12/20 studies had more blunt than penetrating injuries. The review also included five combat studies (Borgman 2007, Cap 2012, Duchesne 2008,

Pidcoke 2012 and Simmons 2011).

STUDY DETAILS: Tapia 2013

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian healthcare context with few caveats. Three different definitions of massive transfusion were used in the included studies.

Additional comments

Authors conclusions:

Patients with penetrating injuries who require massive transfusion should be transfused early using balanced ratios of RBC, FFP and platelets.

Included studies:

Pidcoke 2012, Holcomb 2012, Cap 2012, Sharpe 2012, Brown 2011, Rowell 2011, Sambasivan 2011, Simmons 2011, deBiasi 2011, Inaba 2011, Duchesne 2010, Inaba 2010, Shaz 2010, Dente 2009, Zink 2009, Holcomb 2008, Gunter 2008, Duchesne 2008, Cotton 2008, Borgman 2007

Cl, confidence interval; FFP, fresh frozen plasma; ITT, intention-to-treat; MD, mean difference; NR, not reported; PLT, platelet; PP, perprotocol; RBC, red blood cells; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation; SR, systematic review; USA, United States America

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Jones 2016

Citation

Jones, AR and Frazier, SK. "Association of Blood Component Ratio With Clinical Outcomes in Patients After Trauma and Massive Transfusion: A Systematic Review." Advanced Emergency Nurse Journal. 2016; 38(2): 157-168.

Affiliation/Source of funds

Source of Funding: Details on funding not reported.

Author affiliations: Dr Jones affiliated with Department of Acute, Chronic and Continuing Care, School of Nursing University of Alabama at Birmingham and Dr Frazier affiliated with College of Nursing, University of Kentucky, Lexington.

Conflict of interest: The authors declared no conflicts of interest (p157)

Study design	Level of evidence	Location	Setting
SR of 21 observational studies	1-111	Iraq (3), US (13), Germany (2), Australia (1), Japan (1), unknown (1)	Civilian Level I or major trauma centres (12) or military hospitals (4)
Intervention		Comparator	
Ratios (and supporting justifications) varied between studies with categorisations including high, medium or low, numerical ranges or a combination of both.		Low ratio of blood componer included studies)	nts (from 1:20 to 1:1.5 in the
definitions varied across inclu	ided studies up to 1:12)		
Dopulation characteristics			

Population characteristics

Adult trauma patients, a mixture of blunt and penetrating trauma, who received massive transfusion as defined by the study's investigator

Military population with penetrating injuries – Borgman 2007; Cap 2012; Perkins 2009

Patients with blunt trauma only - Brown 2012; Sperry 2008

Adult trauma patients – Duchesne 2008; Duchesne 2011; Holcomb 2008; Holcomb 2011; Gunter 2008; Inaba 2010; Kashuk 2008; Kudo 2014; Maegele 2008; Magnotti 201; Mitra 2010; Peiniger 2011; Snyder 2009; Teixeira 2009; Van 2010; Zink 2009

Length of follow-up	Outcomes measured
Databases: PubMed, CINAHL and MEDLINE (Ovid)	Mortality (24 hours or 30 days)
Citations published in English between 2007 and 2015	MOF
	Nosocomial infections
	ARDS
	ARF
	Sepsis
	LOS (hospital and ICU) or free days

STUDY DETAILS: Jones 2016

Ventilator days or free days

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Critically low

Description: More than one critical flaw with or without non-critical weaknesses – the review has more than one critical flaw and should not be relied on to provide an accurate and comprehensive summary of the available studies. *Risk of bias of included studies*: The authors concluded the risk of bias for the included studies was low, although only two studies were prospective. Military studies were concluded to have a higher risk of bias. The most common sources of potential bias were lack of primary outcome reporting for mortality and LOS and AEs such as sepsis and ARDS. Mentions seven studies accounted for survival bias, a concept that certain patients may have been more likely to die earlier than others because they did not live long enough to receive the treatments necessary for survival.

RESU	JLTS:
------	-------

Outcome	High ratio	Low ratio	Risk estimate (95%	Statistical significance
No. patients	n/N (%)	n/N (%)	CI)	<i>p</i> -value
(No. trials)	Mean ± SD	Mean ± SD		Heterogeneity ^a
				l² (p-value)
High vs low FFP:PRE	BC ratios			
Mortality (24 hours	Meta-analysis not cond	ucted:		
or 30 days)	Administration of blood	d components close to c	or equalling 1:1:1 for	
17 studies	RBCs:FFP:PLTs was sigr	nificantly associated wit	h reduced mortality	
	in the majority of studie	es.		
10 studies	Significant survival ben	efit when the FFP:PRBC	C ratio approached 1:1	
Borgman 2007	(decrease in mortality is			
Brown 2012				
Duchesne 2008				
Ducheshe 2009				
Holcomb 2008				
Maegele 2008				
Deiniger 2011				
Teixeira 2009				
7ink 2009				
7 studies	No difference in mortal	ity based on FED.DDBC	ratio groups	
Kashuk 2008		ity bused officer rece	ratio groups.	
Kudo 2014				
Magnotti 2011				
Mitra 2010				
Snyder 2009				
Sperry 2008				
Van 2010				
Hospital LOS	Significant differences i	in hospital LOS betweer	n FFP:PRBC ratio	
4 studies	groups – those who rec	eived high ratios experi	enced an average	
Brown 2012	LOS of 15.5 days longer	than those in the low ra	tio groups	
Maegele 2008				
Peiniger 2011				
Sperry 2008				
High vs low PLT:PRB	C ratios			
Mortality (24 hours	Administration of blood	components close to c	or equalling 1:1:1 for	
or 30 days)	RBCs:FFP:PLTs was sign	nificantly associated wit	h reduced mortality	
	in the majority of studie	25		

STUDY DETAILS: Jones 2016					
7 studies	Superior survival for bot	h military and civilian p	patients who received		
Brown 2012	a PLT:PRBC ratio closest to 1:1				
Gunter 2008					
Holcomb 2008					
Holcomb 2011					
Inaba 2010					
Perkins 2009					
Zink 2009					
High vs low FFP:PRB	C or PLT:PRBC ratios				
MOF	Significant difference in	rates of MOF betweer	high ratio (closer to		
3 studies	1:1) and low ratio groups	Those in the low ratio	groups experienced		
Cap 2012	an average MOF rate of	27% compared with th	ose in the high		
Holcomb 2011	groups that experience	d an average rate of 47	'%		
Maegele 2008					
Hospital LOS/free	6 ± 8 days	3 ± 7 days	NR	Favours combination of	
days				high ratios of both	
Holcomb 2008				FFP:PRBCs and	
				PLTs:PRBCs	
				p < 0.001	
ICU LOS/free days					
4 studies	15.5 ± 4.4 days	14.1 ± 6.3 days	NR	Subjects receiving	
Brown 2012	NR	NR		ratios close to 1:1	
Maegele 2008	NR	NR		LOS	
Mitra 2010	NR	NR			
Peiniger 2011	NR	NR			
3 studies	7.5 ± 3.5 days	5.5 ± 3.5 days	NR	Subjects receiving	
Holcomb 2008	NR	NR		ratios closer to 1:1	
Hoicomb 2011	NR	NR		required shorter ICU	
Sperry 2008	NR	NR		LOS	
Ventilation days	12 ± 3.6 days	7.8 ± 5.6 days	NR	Significant differences	
3 studies				high and low ratios	
Maegele 2008	NR	NR		night and low ratios.	
Mitra 2010	NR	NR			
Sperry 2008	NR	NR			
Ventilator-free days	9.5 ± 2.9 days	6 ± 2.9 days	NR	Subjects receiving	
4 studies				shorter ventilation	
Holcomb 2008	NR	NR			
Holcomb 2011		NR			
Peiniger 2011		NR			
Zink 2009	NR	NR			
Nosocomial	NR	NR	NR	No difference between	
infections				ratio groups observed	
A SLUCIES					
Kudo 2014					
Dorking 2000					
Perkins 2009					
ARDS	NR	NR	NR	No difference between	
4 studies				ratio groups observed	
Borgman 2007					

STUDY DETAILS: Jones 2016				
Kudo 2014				
Perkins 2009				
Snyder 2009				
ARF	NR	NR	NR	No difference between
4 studies				ratio groups observed
Borgman 2007				
Kudo 2014				
Perkins 2009				
Snyder 2009				
Sepsis	NR	NR	NR	No difference between
4 studies				ratio groups observed
Borgman 2007				
Kudo 2014				
Perkins 2009				
Snyder 2009				
EXTERNAL VALIDI	ΓY			
Generalisability (rele	vance of the study popu	lation to the Guidelin	es target population)	
The evidence is directly generalisable to the Australian population with some caveats.				
Three studies were conducted in Combat Support Hospitals in Iraq (Borgman 2007, Cap 2012 and Perkins 2009).				
Applicability (relevar	nce of the evidence to th	ne Australian health ca	are system)	
The evidence is direct	ly applicable to the Austr	alian healthcare contex	xt	
Additional comment	S			
Authors conclusions:				
Those who received h	igh ratios experienced no	ot only greater survival	benefit but also higher	rates of multiple-organ
failure; all other clinica	al outcomes findings wer	e equivocal.		
Included studies:				
Borgman 2007, Duchesne 2008, Gunter 2008, Holcomb 2008, Kashuk 2008, Maegele 2008, Sperry 2008, Duchesne				
2009, Perkins 2009, Snyder 2009, Teixeira 2009, Zink 2009, Inaba 2010, Mitra 2010, Van 2010, Holcomb 2011, Magnotti				
AE adverse events: APDS	acute respiratory distress sy	2014 odrome: ADE acute renal f	ailure: CL confidence inter	val: FED: fresh frozen plasma:
ICU, intensive care uni	t; ITT, intention-to-treat; LOS	, length of stay; MD, mean	difference; MOF, multi-org	an failure; NR, not reported;
PLT, platelet; PP, per-p	PLT, platelet; PP, per-protocol; PRBC, packed red blood cell; RR, relative risk; SD, standard deviation; SR, systematic review; US; United			
States	I studios with formal mota a	nalycic Hataraganaity daf	inod as follows: (i) no signif	icant beterogeneity if D > 01

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Poole 2016

Citation

Poole D, Cortegiani A, Chieregato A, Russo E, Pellegrini C, De Blasio E, Mengoli F, Volpi A, Grossi S, Gianesello L, Orzalesi V, Fossi F, Chiara O, Coniglio C, Gordini G; Trauma Update Working Group (2016). Blood Component Therapy and Coagulopathy in Trauma: A Systematic Review of the Literature from the Trauma Update Group. PloS one, 11(10), e0164090. doi:10.1371/journal.pone.0164090

Affiliation/Source of funds

Source of Funding: The authors received no specific funding for this work.

Author affiliations: Anesthesia and Intensive Care Operative Unit, Belluno, Italy; Department of Biopathology and Medical Biotechnologies (DIBIMED), Section of Anesthesia, Analgesia, Intensive Care, and Emergency, University of Palermo, Italy; Neurointensive Care Unit ASST Great Metropolitan Hospital, Milan, Italy; Anaesthesia and Intensive Care Unit, Surgical and Severe Trauma Department, Hospital, Cesena, Italy; Anesthesia and Intensive Care, AO "Rummo", Benevento, Italy; UOC Intensive Care and Territorial Emergency Department, "Maggiore" Hospital, Bologna, Italy; Anesthesia and Intensive Care, AOU of Parma, Parma, Italy; Departmental Structure of Anesthesia and Intensive Care for Orthopedic Surgery, AOU "Careggi", Florence, Italy; Neuroanesthesia and Neurointensive Care, AOU "Careggi", CTO, Florence, Italy; Trauma Center Department, ASST Great Metropolitan Niguarda Hospital, Milan, Italy *Conflict of interest*: The authors declared no conflicts of interest.

STUDY DETAILS: Poole 2016							
Study design	Level of evidence		Location	Setting			
SR of 9 observational studies + 1 RCT (Holco 2015) published after conclusion of the liter search	omb the rature	nb ne ture		NR US (Holcomb 2015)	Trauma		
Intervention				Comparator			
Observational studies heterogenous, comparing several ratios. Individual study ratios not clearly reported			ring several orted	Observational studies heterogenous, comparing several ratios. Individual study ratios not clearly reported			
Holcomb 2013: FFP/PRBC <1:2				Holcomb 2013: FFP/PRBC ≥1:2 - <1:1 and ≥1:1			
Holcomb 2015: FFP/p	latelet/P	RBA ratio 1:1:1		Holcomb 2015: FFP/platelet/PRBC ratio 1:1:2			
Population characte	ristics			1			
Adult trauma patient	s requiri	ng transfusion					
Length of follow-up				Outcomes measured			
A literature search was conducted on Medline via PubMed (from inception- 14 December 2014).			ne via .).	Mortality (24-hours or 30-d	ay)		
INTERNAL VALIDI	ΓY			·			
Overall QUALITY of t	he syste	ematic review	(descriptive)				
Rating (AMSTAR): Lov	N						
<i>Description</i> : One critical flaw with or without non-critical weaknesses – the review has a critical flaw and <i>may not</i> provide an accurate and comprehensive summary of the available studies that address the question of interest.							
		es. Not reported					
RESULTS:	1.1.1	+i.a.	1.1.2 ratio	Deletive riek (05% Cl)	Ctatistical significance		
No. patients (No. trials)	n/N (% Mean) ± SD	n/N (%) Mean ± SD	Hazard ratio (95% CI)	p-value Heterogeneity ^a I ² (p-value)		
FFP/platelet/PRBC r	atio 1:1:1	vs FFP/platele	et/PRBC ratio	1:1:2			
Mortality, 24-hours N = 1552							
(2 studies) Holcomb 2013 (N = 876)	FFP:PF FFP:PF FFP:PF FFP:PF	RBC ratio ≥1:1 RBC ratio: ≥1:2 to RBC ratio <1:2 (ro RBC (Cont. Var.)	o <1:1 ef)	HR 0.23 (NA) HR 0.42 (NA) HR 1.00 (NA) HR 0.31 (0.16 ± 0.58)	No protective effect of high FFP/PRBC ratios between 6 and 24 hours or between 24 hours and 30 days		
Holcomb 2015 (N = 676)	43/335	5 (12.8) 58/341 (17.0)		RR 0.75 (0.52, 1.09)	No significant difference NR		
Mortality, 30-days N = 1552			1				
(2 studies) Holcomb 2013 (N = 876)	FFP:PF FFP:PF FFP:PF FFP:PF	PRBC ratio ≥1:1 PRBC ratio: ≥1:2-<1:1 PRBC ratio <1:2 (ref) PRBC (Cont. Var.)		HR 0.23 (NA) HR 0.42 (NA) HR 1.00 (NA) HR 0.31 (0.16±0.58)	No protective effect of high FFP/PRBC ratios between 6 and 24 hours or between 24 hours and 30 days		
Holcomb 2015 (N = 676)	75/335	(22.4)	89/341 (26.1)	RR 0.86 (0.66, 1.12)	No significant difference p = NR		
EXTERNAL VALIDI	TY						

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population with some caveats. The population from the included studies have not been described in detail.

STUDY DETAILS: Poole 2016

STUDY DETAILS: Cannon 2017

Surgery, 82(3), pp.605-617.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian healthcare context

Additional comments

Authors conclusions:

Even if early (i.e. 6 hours from admission) protective effect of high ratios may be present (low evidence provided by observational study), in the medium and long period no beneficial effect is detected (high evidence from an RCT). High 1:1 FFP/PRBC ratios are not effective in determining a 12% mortality reduction compared to 1:2 ratios. The two studies were sufficiently homogeneous to provide cumulative "high" level evidence against the greater efficacy of 1:1 vs. 1:2 FFP/RPBC ratios

Included studies:

Citation

Holcomb 2013 (observational study), Holcomb 2015 (RCT included even though it was published after the literature search for this review was conducted)

Cl, confidence interval; FFP, fresh frozen plasma; HR, higher ratio; ITT, intention-to-treat; MD, mean difference; NR, not reported; PP, perprotocol; PRBC, packed red blood cell; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation; SR, systematic review

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

Cannon, J.W., Khan, M.A., Raja, A.S., Cohen, M.J., Como, J.J., Cotton, B.A., Dubose, J.J., Fox, E.E., Inaba, K., Rodriguez, C.J. and Holcomb, J.B., 2017. Damage control resuscitation in patients with severe traumatic hemorrhage: a practice management guideline from the Eastern Association for the Surgery of Trauma. Journal of Trauma and Acute Care

Affiliation/Source of funds						
Source of Funding: Source of funding not disclosed						
Author affiliations: Author Br	Author affiliations: Author Bryan A. Cotton is a consultant, Haemonetics Corporation.					
Conflict of interest: The authority	or declares no conflict of inte	rest.				
Study design Level of evidence Location Setting						
Systematic review of RCTs and cohort studies	1-111	NR	Trauma			
Intervention	·	Comparator				
PICO 2:		PICO 2:				
high ratio of plasma to RB	C	low ratio of plas	sma to RBC			
high ratio of platelet to RE	3C	low ratio of plat	telet to RBC			
High ratio of plasma:RBC and	d platelet:RBC defined as	Low ratio defined	as less than or equal to 1:1:2 (relatively			
close as possible to 1:1:1 (relati	ively more plasma and	less plasma and p	latelet).			
platelet).						
Population characteristics						
Adult patients with severe trauma.						
15 studies for Plasma:RBC ratios						
(1 RCT: Holcomb 2015; 2 prospective observational studies: Kutcher 2014, Sperry 2008; 12 retrospective studies:						
Borgman 2007, Duchesne 2009, Guidry 2013, Halmin 2013, Holcomb 2008, Kim 2014, Magnotti 2011, Mitra 2010,						
Peiniger 2011, Snaz 2010, Snyder 2009, Teixeira 2009)						
4 studies for Platelet:RBC ratios						
(1 RCT: Holcomb 2015; 3 retrospective studies: Holcomb 2008, Perkins 2009, Shaz 2010)						
Length of follow-up Outcomes measured						
Literature search of studies published in PubMed, Mortality (in hospital or 30 day)						
MedLine and EMBASE from January 1985 to December 2015						

STUDY DETAILS: Cannon 2017

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Moderate

Description: More than one-critical weakness – the systematic review has more than one weakness but no critical flaws. It may provide an accurate summary of the results of the available studies that were included in the review.

Risk of bias of included studies: **PICO 2:** Authors considered the overall quality of evidence to be moderate due to 1 RCT (high quality), 2 observational studies (moderate) balancing other low-quality retrospective studies. Heterogeneity was considered moderate for plasma:RBC data and high for platelet:RBC data.

RESULTS:

Outcome	High ratio	Low ratio	Risk estimate (95% CI)	Statistical significance			
No. trials (No.	n/N (%)	n/N (%)		p-value			
patients)	Mean ± SD	Mean ± SD		Heterogeneity			
				p-value (l²)			
High vs low Plasma:RBC ratio							
Mortality, in	846/2771 (30.5)	968/2521 (38.4)	OR 0.60 (0.46, 0.77)	Favours intervention			
hospital/30 day				<i>p</i> < 0.0001			
14 studies (N = 5292)				Substantial heterogeneity			
				<i>p</i> < 0.00001 (l ² = 72%)			
RCTs							
1 study (N = 680)				No significant difference			
Holcomb 2015	75/338 (22.2)	89/342 (26.0)	OR 0.81 (0.57, 1.15)	p = 0.24			
Observational				No significant difference			
2 studies (N = 558)	68/193 (35.2)	139/365 (38.1)	OR 0.68 (0.46, 1.02)	p = 0.06			
Kutcher 2014	39/91 (42.9)	29/52 (55.8)	OR 0.59 (0.30,1.18)	No significant			
Sperry 2008	29/102 (28.4)	110/313 (35.1)	OR 0.73 (0.45,1.20)	heterogeneity			
				p = 0.63 (l ² = 0%)			
Retrospective							
11 studies (N = 4054)	703/2240 (31.4)	740/1814 (40.8)	OR 0.56 (0.41, 0.77)	Favours intervention			
Borgman 2007	31/162 (19.1)	38/84 (45.2)	OR 0.29 (0.16,0.51)	p = 0.0004			
Duchesne 2009	13/46 (28.3)	40/89 (44.9)	OR 0.48 (0.22,1.04)	Substantial heterogeneity			
Halmin 2013	69/335 (20.6)	53/407 (13.0)	OR 1.73 (1.17,2.56)	<i>p</i> < 0.00001 (l ² = 77%)			
Holcomb 2008	87/252 (34.5)	74/166 (44.6)	OR 0.66 (0.44,0.98)				
Kim 2014	22/66 (33.3)	14/32 (43.8)	OR 0.64 (0.27,1.53)				
Magnotti 2011	25/66 (37.9)	22/37 (59.5)	OR 0.42 (0.18,0.95)				
Mitra 2010	44/167 (26.3)	55/164 (33.5)	OR 0.71 (0.44,1.14)				
Peiniger 2011	317/871 (36.4)	206/379 (54.4)	OR 0.48 (0.38,0.61)				
Shaz 2010	41/100 (41)	64/114 (56.1)	OR 0.54 (0.32,0.94)				
Snyder 2009	24/60 (40 0	43/74 (58.1)	OR 0.48 (0.24,0.96)				
Teixeira 2009	30/114 (26.3)	131/268 (48.9)	OR 0.37 (0.23,0.60)				
Blood products	(n = 791)	(n = 819)	MD -1.42 (-4.39, 1.54)	No significant difference			
used or RBC in 24				p = 0.35			
hours, units				Substantial heterogeneity			
5 studies (N = 1610)				p < 0.00001 (l ² = 91%)			
				,			
RCT				No significant difference			
1 study (N = 679)	9 ± 7.4 (n = 338)	9 ± 7.4 (n = 341)	MD 0.00 (–1.11, 1.11)	p = 1.00			
Holcomb 2015							
				Favours intervention			
Observational	(n = 193)	(n = 375)	MD -4.26 (-7.17, 1.36)	<i>p</i> = 0.004			
2 studies (N = 558)	7 ± 1.7 (n = 91)	10 ± 3.75 (n = 52)	MD –3.0 (–4.08, –1.92)	Substantial heterogeneity			

STUDY DETAILS: Cannon 2017						
Kutcher 2014	16 ± 9 (n = 102)	22 ± 17 (n = 313)	MD -6.00 (-8.57, -3.43)	p = 0.03 (l ² = 78%)		
Sperry 2008						
Retrospective	(n = 260)	(n = 113)	MD 0.84 (-9 .28, 10.95)	No significant difference		
2 studies (N = 373)				p = 0.87		
Guidry 2013	19.3 ± 14.8 (n = 194)	13.9 ± 11 (n = 81)	MD 5.40 (2.23, 8.57)	Substantial heterogeneity		
Kim 2014	26 ± 19.8 (n = 66)	31 ± 17.8 (n = 32)	MD –5.00 (–12.80, 2.80)	p = 0.02 (l ² = 83%)		
High vs low ratio Plo	itelet:RBC					
Mortality, in	238/843 (28.2)	328/764 (42.9)	OR 0.44 (0.28, 0.71)	Favours intervention		
hospital/ 30-days			181 fewer per 1000 (from	p = 0.0006		
4 studies (N = 1607)			81 to 255 fewer)	Substantial heterogeneity		
DCTs				p = 0.004 (l² = 78%)		
1 study (N = 680)				Ne significant differences		
Holcomb 2015			OR 0.61 (0.57, 1.15)	no significant difference		
	75/338 (22.2)	89/342 (26.0)		p = 0.24		
Retrospective			OR 0.36 (0.27, 0.47)			
3 studies (N = 927)	163/505 (32 3)	279//22 (56 6)	OR 0.38 (0.26.0.58)	Favours intervention		
Holcomb 2008	67/234 (28.6)	94/184 (511)	OR 0.38 (0.24.0.61)	p < 0.0000]		
Perkins 2009	/9/1/5 (33.8)	86/150 (57.3)	OR 0.29 (0.16.0.52)	No significant		
Shaz 2010	47/126 (37 3)	59/88 (67.0)		heterogeneity		
	47/120 (37.3)	35,00 (07.0)		p = 0.72 (l ² = 0%)		
Blood products	9 ± 7.4 (n = 338)	9 ± 7.4 (n = 341)	MD 0.00 (–1.11, 1.11)	No significant difference		
used or RBC in 24				p = 1.00		
hours, units						
1 RCT (N = 679)						
Holcomb 2015						
EXTERNAL VALIDI	TY					
Generalisability (rele	evance of the study p	population to the G	uidelines target population			
Overall, study population is generalisable to the guidelines population.						
Applicability (relevance of the evidence to the Australian health care system)						
Study is applicable to the Australian health care system.						
Additional comments						
Authors conclusions:						
The authors recommend targeting a high ratio of both plasma and platelet:RBC for resuscitating severely injured						
bleeding trauma patients.						
List of relevant included studies:						
Holcomb 2015, Kutcher 2014, Sperry 2008, Borgman 2007, Duchesne 2009, Guidry 2013, Halmin 2013, Holcomb 2008, Kim 2014, Magnetti 2011, Mitra 2010, Deiniger 2011, Shaz 2010, Spyder 2009, Teixeira 2009, Derking 2009,						
AR. absolute risk: CL confidence interval: DCR: damage control resuscitation: ITT intention-to-treat: MD mean difference: MHP: Major						
haemorrhage protocol; NR, not reported; OR, odds ratio; PICO, population intervention comparator outcome; PP, per-protocol; RBC,						
red blood cell; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation						

STUDY DETAILS: Rahouma 2017
Citation
Rahouma M, Kamel M, Jodeh D, Kelley T, Ohmes LB, de Biasi AR, et al. Does a balanced transfusion ratio of plasma to packed red blood cells improve outcomes in both trauma and surgical patients? A meta-analysis of randomized controlled trials and observational studies. The American Journal of Surgery. 2017; https://doi.org/10.1016/j.amjsurg.2017.08.045
Affiliation/Source of funds

Source of Funding: The authors declared that they received no funding for this study (pg8)

Author affiliations M						
	R., M.K., D.J., LB.O., AR. (dB., AA.A., TS.G., C.	L., LN.G. & M.G. affiliated with D	epartment of		
Cardiothoracic Surger	y, Weill Cornell Medici	ne, New York, NY,	USA; TK affiliated with Departr	ment of Surgery, Dwight		
D Eisenhower Army M	edical Center, Augusta	a, GA, USA; UB affi	iliated with Bristol Heart Institu	ite, University of Bristol,		
School of Clinical Scier	nces, Bristol, UK; PCL a	ffiliated with Card	liothoracic Surgery, Northwell	Health, Hofstra Northwell		
School of Medicine, Ne	ew York, NY, USA		<i>i</i>			
Conflict of interest: The	e authors declared no	conflicts of interes	st. (pg8)	1		
Study design	Level of evide	Level of evidence Location Setting				
SR and MA of 34	I USA (26), Germany (3), Trauma (military					
observational studies a	servational studies and 2 Australia (1), Korea (1), civilian), Medical					
RCTs	Ts Switzerland (1), Canada (1), UK					
		(1)				
Intervention		C	omparator			
Higher FFP:RBC ratio		C. ra	Contemporaneous patient cohorts with lower FFP:RBC ratio			
Population character	istics					
Mean age: 37.1 years fo	or trauma only patients	s vs 66.7 years for 1	non-trauma patients.			
63% of studies were bl	unt trauma					
Length of follow-up		0	outcomes measured			
Databases searched: P	PubMed, MEDLINE, EM	1BASE, Web M	lortality ARDS			
of Science, Science Dir	rect, Google Scholar	A	LI			
	p to 10 January 2016					
Overall QUALITY of th	r Ne systematic review	(descriptive)				
Pating (AMSTAR): Low	le systematic review	(descriptive)				
Description: One critic	al flaw, with or without	t non critical wool	knossos the review has a critic	cal flaw and may not		
provide an accurate ar	al haw with or without	nmary of the avail	lable studies that address the	suestion of interest		
provide diracediate di	la comprenensive sur					
Disk of bigs of included	d studies: No formal rig	sk of bias was perf	formed by the authors. The aut	hors acknowledge that		
Risk of bias of included	d studies: No formal ris	sk of bias was perf	formed by the authors. The authors the constant of the guality of available evide	hors acknowledge that		
Risk of bias of included most the studies were limited by survival bias	d studies: No formal ris observational raising s and length of time bi	sk of bias was perf concerns regardir ias. The authors tri	formed by the authors. The aut ng the quality of available evide ied to be comprehensive rathe	hors acknowledge that ence. Many studies were er than attempting to		
Risk of bias of included most the studies were limited by survival bias control for the inheren	d studies: No formal ris observational raising and length of time bi t bias present in the o	sk of bias was perf concerns regardir ias. The authors tri bservational studi	formed by the authors. The aut ng the quality of available evide ied to be comprehensive rathe ies.	hors acknowledge that ence. Many studies were r than attempting to		
Risk of bias of included most the studies were limited by survival bias control for the inherer RESULTS:	d studies: No formal ris observational raising s and length of time bi at bias present in the o	sk of bias was perf concerns regardir ias. The authors tri ibservational studi	formed by the authors. The aut ng the quality of available evide ied to be comprehensive rathe ies.	hors acknowledge that ence. Many studies were r than attempting to		
Risk of bias of included most the studies were limited by survival bias control for the inheren RESULTS: Outcome	d studies: No formal ris observational raising and length of time bi t bias present in the o Low ratio	sk of bias was perf concerns regardir as. The authors tri bservational studi	formed by the authors. The authors the construction of the quality of available evide ied to be comprehensive rathe ies.	hors acknowledge that ence. Many studies were er than attempting to Statistical significance		
Risk of bias of included most the studies were limited by survival bias control for the inheren RESULTS: Outcome No. patients	d studies: No formal ris observational raising and length of time bi t bias present in the o Low ratio n/N (%)	sk of bias was perf concerns regardir ias. The authors tri ibservational studi High ratio n/N (%)	Formed by the authors. The authors the comprehensive rather ies.	hors acknowledge that ence. Many studies were or than attempting to Statistical significance p-value		
Risk of bias of included most the studies were limited by survival bias control for the inheren RESULTS: Outcome No. patients (No. trials)	d studies: No formal ris observational raising s and length of time bi It bias present in the o Low ratio n/N (%) Mean ± SD	High ratio n/N (%) Mean ± SD	formed by the authors. The authors the comprehensive rather ied to be comprehensive rather ies.	hors acknowledge that ence. Many studies were or than attempting to Statistical significance p-value Heterogeneity ^a		
Risk of bias of included most the studies were limited by survival bias control for the inherer RESULTS: Outcome No. patients (No. trials)	d studies: No formal ris observational raising s and length of time bi at bias present in the o Low ratio n/N (%) Mean ± SD	High ratio n/N (%) Mean ± SD	Formed by the authors. The authors the comprehensive rather ied to be comprehensive rather ies.	hors acknowledge that ence. Many studies were er than attempting to Statistical significance p-value Heterogeneity ^a I ² (p-value)		
Risk of bias of included most the studies were limited by survival bias control for the inheren RESULTS: Outcome No. patients (No. trials) Low (<1:1) vs high ≥1:1)	d studies: No formal ris observational raising and length of time bi t bias present in the o Low ratio n/N (%) Mean ± SD	High ratio n/N (%) Mean ± SD	Formed by the authors. The authors the comprehensive rather ies.	hors acknowledge that ence. Many studies were or than attempting to Statistical significance p-value Heterogeneity ^a I ² (p-value)		
Risk of bias of included most the studies were limited by survival bias control for the inherer RESULTS: Outcome No. patients (No. trials) Low (<1:1) vs high ≥1:1) Mortality (24 hrs)	d studies: No formal ris observational raising s and length of time bi at bias present in the o Low ratio n/N (%) Mean ± SD ratios FFP:RBC 696/3518 (19.8)	High ratio n/N (%) Mean ± SD	Formed by the authors. The authors the quality of available evide ied to be comprehensive rathe ies. Risk estimate (95% CI) OR 2.05 (1.55, 2.71)	hors acknowledge that ence. Many studies were or than attempting to Statistical significance p-value Heterogeneity ^a I ² (p-value) Mortality is more likely		
Risk of bias of included most the studies were limited by survival bias control for the inherer RESULTS: Outcome No. patients (No. trials) Low (<1:1) vs high ≥1:1) Mortality (24 hrs) N = 5265 (7 studies)	d studies: No formal ris observational raising and length of time bi t bias present in the o Low ratio n/N (%) Mean ± SD ratios FFP:RBC 696/3518 (19.8)	High ratio n/N (%) Mean ± SD	Formed by the authors. The authors the quality of available evide ied to be comprehensive rathe ies. Risk estimate (95% CI) OR 2.05 (1.55, 2.71)	hors acknowledge that ence. Many studies were or than attempting to Statistical significance p-value Heterogeneity ^a I ² (p-value) Mortality is more likely in lower ratio group		
Risk of bias of included most the studies were limited by survival bias control for the inheren RESULTS: Outcome No. patients (No. trials) <i>Low (<1:1) vs high ≥1:1)</i> Mortality (24 hrs) N = 5265 (7 studies)	d studies: No formal ris observational raising and length of time bi t bias present in the o Low ratio n/N (%) Mean ± SD Pratios FFP:RBC 696/3518 (19.8)	High ratio n/N (%) Mean ± SD	Risk estimate (95% CI) OR 2.05 (1.55, 2.71)	hors acknowledge that ence. Many studies were or than attempting to Statistical significance p-value Heterogeneity ^a I ² (p-value) Mortality is more likely in lower ratio group (comparator)		
Risk of bias of included most the studies were limited by survival bias control for the inheren RESULTS: Outcome No. patients (No. trials) <i>Low (<1:1) vs high ≥1:1)</i> Mortality (24 hrs) N = 5265 (7 studies) RCT	d studies: No formal ris observational raising and length of time bi t bias present in the o Low ratio n/N (%) Mean ± SD 1 ratios FFP:RBC 696/3518 (19.8)	High ratio n/N (%) Mean ± SD	Risk estimate (95% CI) OR 2.05 (1.55, 2.71)	hors acknowledge that ence. Many studies were or than attempting to Statistical significance p-value Heterogeneity ^a I ² (p-value) Mortality is more likely in lower ratio group (comparator) p = 0.03		
Risk of bias of included most the studies were limited by survival bias control for the inherer RESULTS: Outcome No. patients (No. trials) Low (<1:1) vs high ≥1:1) Mortality (24 hrs) N = 5265 (7 studies) RCT Holcomb 2015	d studies: No formal ris observational raising s and length of time bi at bias present in the o Low ratio n/N (%) Mean ± SD 0 ratios FFP:RBC 696/3518 (19.8)	High ratio n/N (%) Mean ± SD	Risk estimate (95% CI) OR 2.05 (1.55, 2.71)	hors acknowledge that ence. Many studies were or than attempting to Statistical significance p-value Heterogeneity ^a I ² (p-value) Mortality is more likely in lower ratio group (comparator) p = 0.03 Significant		
Risk of bias of included most the studies were limited by survival bias control for the inherer RESULTS: Outcome No. patients (No. trials) Low (<1:1) vs high ≥1:1) Mortality (24 hrs) N = 5265 (7 studies) RCT Holcomb 2015	d studies: No formal ris observational raising s and length of time bi at bias present in the o Low ratio n/N (%) Mean ± SD ratios FFP:RBC 696/3518 (19.8) 58/342 (17)	High ratio n/N (%) Mean ± SD 43/338 (12.7)	Formed by the authors. The authors the quality of available evide ied to be comprehensive rathe ies. Risk estimate (95% Cl) OR 2.05 (1.55, 2.71) OR 1.40 (0.91, 2.15)	hors acknowledge that ence. Many studies were or than attempting to Statistical significance p-value Heterogeneity ^a I ² (p -value) Mortality is more likely in lower ratio group (comparator) p = 0.03 Significant heterogeneity		
Risk of bias of included most the studies were limited by survival bias control for the inheren RESULTS: Outcome No. patients (No. trials) <i>Low (<1:1) vs high ≥1:1)</i> Mortality (24 hrs) N = 5265 (7 studies) RCT Holcomb 2015 Observational	d studies: No formal ris observational raising and length of time bi t bias present in the o Low ratio n/N (%) Mean ± SD 0 ratios FFP:RBC 696/3518 (19.8) 58/342 (17)	High ratio n/N (%) Mean ± SD 43/338 (12.7)	Formed by the authors. The authors the quality of available evide ied to be comprehensive rathe ies. Risk estimate (95% CI) OR 2.05 (1.55, 2.71) OR 1.40 (0.91, 2.15)	hors acknowledge that ence. Many studies were or than attempting to Statistical significance p-value Heterogeneity ^a I^2 (p -value) Mortality is more likely in lower ratio group (comparator) p = 0.03 Significant heterogeneity $I^2 = 57\%$		
Risk of bias of included most the studies were limited by survival bias control for the inheren RESULTS: Outcome No. patients (No. trials) <i>Low (<1:1) vs high ≥1:1)</i> Mortality (24 hrs) N = 5265 (7 studies) RCT Holcomb 2015 Observational Duchesene 2009	d studies: No formal ris observational raising s and length of time bi at bias present in the o Low ratio n/N (%) Mean ± SD 0 ratios FFP:RBC 696/3518 (19.8) 58/342 (17) 84/196 (42.9)	High ratio n/N (%) Mean ± SD 43/338 (12.7)	Formed by the authors. The authors the quality of available evide ied to be comprehensive rathe ies. Risk estimate (95% CI) OR 2.05 (1.55, 2.71) OR 1.40 (0.91, 2.15) OR 3.55 (2.22, 5.67)	hors acknowledge that ence. Many studies were or than attempting to Statistical significance p-value Heterogeneity ^a l^2 (p -value) Mortality is more likely in lower ratio group (comparator) p = 0.03 Significant heterogeneity $l^2 = 57\%$		
Risk of bias of included most the studies were limited by survival bias control for the inherer RESULTS: Outcome No. patients (No. trials) Low (<1:1) vs high ≥1:1) Mortality (24 hrs) N = 5265 (7 studies) RCT Holcomb 2015 Observational Duchesene 2009 Maegele 2008	d studies: No formal ris observational raising s and length of time bi at bias present in the o Low ratio n/N (%) Mean ± SD ratios FFP:RBC 696/3518 (19.8) 58/342 (17) 84/196 (42.9) 158/484 (32.6)	High ratio n/N (%) Mean ± SD 215/1747 (12.3) 43/338 (12.7) 33/189 (17.5) 32/229 (14)	Formed by the authors. The authors the quality of available evide ied to be comprehensive rathe ies. Risk estimate (95% CI) OR 2.05 (1.55, 2.71) OR 1.40 (0.91, 2.15) OR 3.55 (2.22, 5.67) OR 2.98 (196, 4.54)	hors acknowledge that ence. Many studies were or than attempting to Statistical significance p-value Heterogeneity ^a I^2 (p -value) Mortality is more likely in lower ratio group (comparator) p = 0.03 Significant heterogeneity $I^2 = 57\%$		
Risk of bias of included most the studies were limited by survival bias control for the inheren RESULTS: Outcome No. patients (No. trials) Low (<1:1) vs high ≥1:1) Mortality (24 hrs) N = 5265 (7 studies) RCT Holcomb 2015 Observational Duchesene 2009 Maegele 2008 Sharpe 2012	d studies: No formal ris observational raising and length of time bint bias present in the o Low ratio n/N (%) Mean ± SD 7 ratios FFP:RBC 696/3518 (19.8) 58/342 (17) 84/196 (42.9) 158/484 (32.6) 31/66 (47)	High ratio n/N (%) Mean ± SD 215/1747 (12.3) 43/338 (12.7) 33/189 (17.5) 32/229 (14) 20/69 (29)	Formed by the authors. The authors the quality of available evide ied to be comprehensive rathe ies. Risk estimate (95% Cl) OR 2.05 (1.55, 2.71) OR 1.40 (0.91, 2.15) OR 3.55 (2.22, 5.67) OR 2.98 (1.96, 4.54) OR 2.17 (1.07, 4.41)	hors acknowledge that ence. Many studies were or than attempting to Statistical significance p-value Heterogeneity ^a I^2 (p -value) Mortality is more likely in lower ratio group (comparator) p = 0.03 Significant heterogeneity $I^2 = 57\%$		
Risk of bias of included most the studies were limited by survival bias control for the inheren RESULTS: Outcome No. patients (No. trials) <i>Low (<1:1) vs high ≥1:1)</i> Mortality (24 hrs) N = 5265 (7 studies) RCT Holcomb 2015 Observational Duchesene 2009 Maegele 2008 Sharpe 2012 Spoerke 2011	d studies: No formal ris observational raising and length of time bi it bias present in the o Low ratio n/N (%) Mean ± SD 7 ratios FFP:RBC 696/3518 (19.8) 58/342 (17) 84/196 (42.9) 158/484 (32.6) 31/66 (47) 222/1498 (14.8)	High ratio n/N (%) Mean ± SD 215/1747 (12.3) 33/189 (17.5) 32/229 (14) 20/69 (29) 14/146 (9.6)	Formed by the authors. The authors the quality of available evide ied to be comprehensive rathe ies. Risk estimate (95% CI) OR 2.05 (1.55, 2.71) OR 1.40 (0.91, 2.15) OR 3.55 (2.22, 5.67) OR 2.98 (1.96, 4.54) OR 2.17 (1.07, 4.41) OP 1.64 (0.93, 2.90)	hors acknowledge that ence. Many studies were or than attempting to Statistical significance p-value Heterogeneity ^a I^2 (p -value) Mortality is more likely in lower ratio group (comparator) p = 0.03 Significant heterogeneity $I^2 = 57\%$		
Risk of bias of included most the studies were limited by survival bias control for the inheren RESULTS: Outcome No. patients (No. trials) <i>Low (<1:1) vs high ≥1:1)</i> Mortality (24 hrs) N = 5265 (7 studies) RCT Holcomb 2015 Observational Duchesene 2009 Maegele 2008 Sharpe 2012 Spoerke 2011	d studies: No formal ris observational raising and length of time bint bias present in the of Low ratio n/N (%) Mean ± SD Dratios FFP:RBC 696/3518 (19.8) 58/342 (17) 84/196 (42.9) 158/484 (32.6) 31/66 (47) 222/1498 (14.8) 29/172 (16.9)	High ratio n/N (%) Mean ± SD 215/1747 (12.3) 33/189 (17.5) 32/229 (14) 20/69 (29) 14/146 (9.6) 23/174 (12.2)	Indicestitute address that address the comprehensive rather is a ddress that address the comprehensive rather is a ddress that address the comprehensive rather is a ddress (95% CI) Risk estimate (95% CI) OR 2.05 (1.55, 2.71) OR 1.40 (0.91, 2.15) OR 3.55 (2.22, 5.67) OR 2.98 (1.96, 4.54) OR 1.64 (0.93, 2.90) OR 1.33 (0.74, 2.41)	hors acknowledge that ence. Many studies were or than attempting to Statistical significance p-value Heterogeneity ^a I^2 (p -value) Mortality is more likely in lower ratio group (comparator) p = 0.03 Significant heterogeneity $I^2 = 57\%$		
Risk of bias of included most the studies were limited by survival bias control for the inheren RESULTS: Outcome No. patients (No. trials) <i>Low (<1:1) vs high ≥1:1)</i> Mortality (24 hrs) N = 5265 (7 studies) RCT Holcomb 2015 Observational Duchesene 2009 Maegele 2008 Sharpe 2012 Spoerke 2011 Undurraga 2015 Wafaicada 2011	d studies: No formal ris observational raising s and length of time bi at bias present in the o Low ratio n/N (%) Mean ± SD ratios FFP:RBC 696/3518 (19.8) 58/342 (17) 58/342 (17) 84/196 (42.9) 158/484 (32.6) 31/66 (47) 222/1498 (14.8) 29/172 (16.9) 114/760 (5)	High ratio n/N (%) Mean ± SD 215/1747 (12.3) 33/189 (17.5) 32/229 (14) 20/69 (29) 14/146 (9.6) 23/174 (13.2) 50/602 (8.2)	Inductives that address the comprehensive rather of the quality of available evided ied to be comprehensive rather ies. Risk estimate (95% CI) OR 2.05 (1.55, 2.71) OR 1.40 (0.91, 2.15) OR 3.55 (2.22, 5.67) OR 2.98 (1.96, 4.54) OR 1.40 (0.93, 2.90) OR 1.33 (0.74, 2.41) OR 1.40 (1.27, 2.272)	hors acknowledge that ence. Many studies were or than attempting to Statistical significance p-value Heterogeneity ^a l^2 (p -value) Mortality is more likely in lower ratio group (comparator) p = 0.03 Significant heterogeneity $l^2 = 57\%$		
Risk of bias of included most the studies were limited by survival bias control for the inheren RESULTS: Outcome No. patients (No. trials) Low (<1:1) vs high ≥1:1) Mortality (24 hrs) N = 5265 (7 studies) RCT Holcomb 2015 Observational Duchesene 2009 Maegele 2008 Sharpe 2012 Spoerke 2011 Undurraga 2015 Wafaisade 2011	<i>d studies</i> : No formal ris observational raising and length of time bi it bias present in the o Low ratio n/N (%) Mean ± SD <i>ratios FFP:RBC</i> 696/3518 (19.8) 58/342 (17) 58/484 (32.6) 31/66 (47) 222/1498 (14.8) 29/172 (16.9) 114/760 (15)	High ratio n/N (%) Mean ± SD 215/1747 (12.3) 33/189 (17.5) 32/229 (14) 20/69 (29) 14/146 (9.6) 23/174 (13.2) 50/602 (8.3)	Formed by the authors. The authors the quality of available evide ied to be comprehensive rathe ies. Risk estimate (95% Cl) OR 2.05 (1.55, 2.71) OR 1.40 (0.91, 2.15) OR 3.55 (2.22, 5.67) OR 2.98 (1.96, 4.54) OR 1.40 (0.93, 2.90) OR 1.33 (0.74, 2.41) OR 1.95 (1.37, 2.77)	hors acknowledge that ence. Many studies were or than attempting to Statistical significance p-value Heterogeneity ^a I^2 (p -value) Mortality is more likely in lower ratio group (comparator) p = 0.03 Significant heterogeneity $I^2 = 57\%$		
Risk of bias of included most the studies were limited by survival bias control for the inheren RESULTS: Outcome No. patients (No. trials) <i>Low (<1:1) vs high ≥1:1)</i> Mortality (24 hrs) N = 5265 (7 studies) RCT Holcomb 2015 Observational Duchesene 2009 Maegele 2008 Sharpe 2012 Spoerke 2011 Undurraga 2015 Wafaisade 2011 Mortality 30 days	<i>d studies</i> : No formal ris observational raising and length of time bi it bias present in the o <i>Low ratio</i> <i>n/N (%)</i> <i>Mean ± SD</i> <i>ratios FFP:RBC</i> 696/3518 (19.8) <i>58/342 (17)</i> <i>58/342 (17)</i> <i>58/342 (17)</i> <i>58/484 (32.6)</i> <i>31/66 (47)</i> <i>222/1498 (14.8)</i> <i>29/172 (16.9)</i> <i>114/760 (15)</i> 1074/3689 (29.1)	High ratio n/N (%) Mean ± SD 215/1747 (12.3) 33/189 (17.5) 32/229 (14) 20/69 (29) 14/146 (9.6) 23/174 (13.2) 50/602 (8.3)	Formed by the authors. The authors the quality of available evide ied to be comprehensive rathe ies. Risk estimate (95% CI) OR 2.05 (1.55, 2.71) OR 1.40 (0.91, 2.15) OR 3.55 (2.22, 5.67) OR 2.98 (1.96, 4.54) OR 1.64 (0.93, 2.90) OR 1.33 (0.74, 2.41) OR 1.95 (1.37, 2.77) OR 1.36 (1.09, 1.69)	hors acknowledge that ence. Many studies were or than attempting to Statistical significance p-value Heterogeneity ^a I^2 (p -value) Mortality is more likely in lower ratio group (comparator) p = 0.03 Significant heterogeneity $I^2 = 57\%$ Mortality is more likely		
Risk of bias of included most the studies were limited by survival bias control for the inheren RESULTS: Outcome No. patients (No. trials) <i>Low (<1:1) vs high ≥1:1)</i> Mortality (24 hrs) N = 5265 (7 studies) RCT Holcomb 2015 Observational Duchesene 2009 Maegele 2008 Sharpe 2012 Spoerke 2011 Undurraga 2015 Wafaisade 2011 Mortality 30 days N = 5266 (7 studies)	d studies: No formal ris observational raising and length of time bi it bias present in the o Low ratio n/N (%) Mean ± SD Dratios FFP:RBC 696/3518 (19.8) 58/342 (17) 58/342 (17) 58/484 (32.6) 31/66 (47) 222/1498 (14.8) 29/172 (16.9) 114/760 (15) 1074/3689 (29.1)	High ratio n/N (%) Mean ± SD 215/1747 (12.3) 33/189 (17.5) 32/229 (14) 20/69 (29) 14/146 (9.6) 23/174 (13.2) 50/602 (8.3)	Formed by the authors. The authors the quality of available evide ied to be comprehensive rathe ies. Risk estimate (95% CI) OR 2.05 (1.55, 2.71) OR 1.40 (0.91, 2.15) OR 3.55 (2.22, 5.67) OR 2.98 (1.96, 4.54) OR 1.64 (0.93, 2.90) OR 1.33 (0.74, 2.41) OR 1.95 (1.37, 2.77) OR 1.36 (1.09, 1.69)	Advantagehors acknowledge thatence. Many studies wereor than attempting toStatistical significance p -valueHeterogeneity ^a I ² (p -value)Mortality is more likelyin lower ratio group(comparator) $p = 0.03$ SignificantheterogeneityI ² = 57%Mortality is more likelyto occur in lower ratiogroup (comparator)		

STUDY DETAILS: Rahouma 2017						
RCT				p = 0.09		
Holcomb 2015	89/342 (26)	75/338 (22.2)	OR 1.23 (0.87, 1.75)	Moderate		
Nascimento 2013	3/32 (9.4)	11/37 (29.7)	OR 0.24 (0.06, 0.97)	heterogeneity		
				l ² = 45%		
Observational						
Maegele 2008	222/484 (45.9)	76/229 (33.2)	OR 1.71 (1.23, 2.37)			
Spoerke 2011	351/1498 (23.4)	32/146 (21.9)	OR 1.09 (0.72, 1.64)			
Undurraga 2015	43/172 (25)	36/174 (20.7)	OR 1.28 (0.77, 2.11)			
Wafaisade 2011	205/760 (27)	118/602 (19.6)	OR 1.52 (1.17, 1.96)			
Zink 2009	161/401 (40.1)	13/51 (25.5)	OR 1.96 (1.01, 3.80)			
Low (<1:1.5) vs high ≥1:1	.5) ratios FFP:RBC					
Mortality 24 hrs	225/1072 (21)	103/805 (12.8)	OR 3.97 (1.37, 11,49)	No significant		
N = 1877 (4 studies)	,,	,		difference		
				p <.00001		
Observational				Significant		
Hardin 2014	113/432 (26.2)	78/470 (16.6)	OR 1.78 (1.29, 2.46)	heterogeneity		
l ustenberger 2011	31/52 (59.6)	18/177 (15.4)	OR 13.04 (6.23, 27.27)	l ² = 88%		
Mitra 2010	41/275 (14.9)	3/56 (5.4)	OR 3.10 (0.92, 10.38)			
Sperry 2008	40/313 (12.8)	4/102 (3.9)	OR 3.59 (1.25, 10.29)			
Mortality 30 days	268/981 (27 3)	185/832 (22 2)	OR 2 45 (114 5 25)	Nosignificant		
N = $(53)(5 \text{ studies})$	200/901 (27.5)	105/052 (22.2)	OR 2.45 (1.14, 5.25)	difference		
14 – 455 (5 studies)				p < 0.00001		
Observational				Significant		
December 2007	70/0/ (/ = 2)			heterogeneity		
Borgman 2007	50/04 (45.2)	9/1162 (19.1)	OR 3.49 (1.95, 0.24)	l ² = 87%		
Biowii 2012	76/470 (14.9)		OR 2.25 (1.05, 4.62)			
Lustenberger 2011	10/52 (09.2)	97/075 (70.0)	OR 9.46 (4.71, 19.01)			
	10/30 (20.0)	20/275(30.2)	OR 0.93 (0.49, 1.74)			
Sperry 2000		23/102 (20.4)	OR 1.50 (0.04, 2.22)			
Low (<1.2) vs mgm (≥1.2)		700/0100 (10 7)		Marian Barris and Blacks		
Mortality (24 nrs)	535/1370 (39.1)	398/2170 (18.3)	OR 2.85 (2.14, 3.81)	Mortality is more likely		
N = 3540 (9 studies)				group (comparator)		
Observations				p = 0.01		
Observational				, Significant		
Borgman 2011	83/237 (35)	86/422 (20.4)	OR 2.11 (1.47, 3.01)	heterogeneity		
Denie 2009	//23 (30.4)	7/50 (14)	OR 2.69 (0.81, 8.87)	l ² = 59%		
Kashuk 2008	44/81 (54.3)	23/59 (39)	OR 1.86 (0.94, 3.68)			
KIM 2014	9/32 (28.1)	2/68 (2.9)	OR 12.91 (2.60, 64.21)			
Magnotti 2011	13/37 (35.1)	7/66 (10.6)	OR 4.57 (1.62, 12.84)			
Peiniger 2011	159/3/9 (42)	157/871 (18)	OR 3.29 (2.52, 4.29)			
Rowell 2011	128/3/5 (34.1)	71/328 (21.6)	OR 1.88 (1.34, 2.63)			
Shaz 2010	66/114 (57.9)	20/100 (20)	OR 5.50 (2.97, 10.17)			
Stanworth 2015	26/92 (28.3)	25/206 (12.1)	OR 2.85 (1.54, 5.29)			
Mortality (30 days)	978/2695 (36.3)	926/3498 (26.5)	OR 1.77 (1.50, 2.10)	Mortality is more likely		
N = 1904 (14 studies)				to occur in lower ratio		
				p = 0.08		
RCT				Moderato		
Holcomb 2008	128/214 (59.8)	103/256 (40.2)	OR 2.21 (1.53, 3.20)	heterogeneity		
				$ ^2 = 37\%$		
Observational						
Borgman 2011	113/237 (47.7)	147/422 (34.8)	OR 1.70 (1.23, 2.36)			
Brown 2011	35/186 (18.8)	25/215 (11.6)	OR 1.76 (1.01, 3.07)			

STUDY DETAILS: Rahouma 2017 Duchesene 2009 30/63 (47.6) 23/72 (31.9) OR 1.94 (0.96, 3.90) Kim 2014 14/32 (43.8) 22/68 (32.4) OR 1.63 (0.69, 3.86) Mazzeffi 2016 13/88 (14.8) 28/364 (7.7) OR 2.08 (1.03, 4.20) Mell 2010 16/41 (39) 13/87 (14.9) OR 3.64 (1.54, 8.62) Peiniger 2011 203/379 (53.6) 317/871 (36.4) OR 2.08 (1.63, 2.66) Rowell 2011 167/375 (44.5) 113/328 (34.5) OR 1.53 (1.13, 2.07) Shaz 2010 50/114 (43.9) 41/100 (41) OR 1.12 (0.65, 1.94) Snyder 2008 43/74 (58.1) OR 1.59 (0.80, 3.15) 28/60 (46.7) Spinella 2011 22/185 (11.9) 25/276 (9.1) OR 1.36 (0.74, 2.48) Teixeira 2009 131/268 (48.9) 30/115 (26.1) OR 2.71 (1.68, 4.38) Van 2010 10/439 (2.3) 11/264 (4.2) OR 0.54 (0.22, 1.28) FFP:RBC ratios (general) NR ARDS (8 studies) NR OR 0.68 (0.40,1.16) There was no difference in the incidence of ARDS with respect to RCT FFP: RBC ratio Holcomb 2015 p = 0.16Observational Brown 2012 Kim 2014 Lustenberger 2011 Nascimento 2013 Sperry 2008 Undurraga 2016 Van 2010 ALI (2 studies) NR NR OR 1.23 (0.81,1.86) There were no differences observed in the incidence of ALI RCT p = 0.34Holcomb 2015 Observational Kim 2014 **EXTERNAL VALIDITY** Generalisability (relevance of the study population to the Guidelines target population) The evidence is directly generalisable to the Australian population with some caveats Applicability (relevance of the evidence to the Australian health care system) The evidence is directly applicable to the Australian healthcare context with few caveats Additional comments Authors conclusions: Our data suggests that there is a survival benefit at 24 h and 30 days when this practice is followed, with the largest

benefit within 24 h. A ratio of 1:1.5 was associated with the highest survival benefit.

List of relevant included studies

Borgman 2007, Borgman 2011, Brown 2011, Brown 2012, De Biasi 2011, Dente 2009, Duchesne 2008, Duchesne 2009, Gunter 2008, Hardin 2014, Holcomb 2015, Holcomb 2008, Kashuk 2008, Kim 2014, Lustenberger 2011, Maegele 2008, Magnotti 2011, Mazzeffi 2016, Mell 2010, Peiniger 2011, Rowell 2011, Sharpe 2012, Shaz 2010, Synder 2008, Spirnella 2011, Stanworth 2015, Teixeira 2009, Undurraga Peri 2015, Van 2010, Wafaisade 2011, Yang 2015, Zink 2009

ARDS, acute respiratory distress syndrome; ALI, acute lung injury; CI, confidence interval; FFP, fresh frozen plasma; ITT, intention-to-treat; MD, mean difference; NR, not reported; OR, odds ratio; PP, per-protocol; RBC, red blood cell; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation; UK, United Kingdom; US, United States

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.
STUDY DETAILS: Maw 2018

Citation

Maw 2018

Maw G. & Furyk C. Pediatric Massive Transfusion. A Systematic Review. Pediatric Emergency Care. 2018; 34 (8), pp.594-598.

Affiliation/Source of funds

Source of *Funding:* None reported

Author affiliations: GM affiliated with Australasian College for Emergency Medicine; and CF affiliated with Australian and New Zealand College of Anaesthetists, Melbourne, Australia.

Conflict of interest: Authors declare no conflict of interest.

Study design	Level of evidence	Location	Setting	
SR of 4 nonrandomised trials (3 retrospective analyses and one non- randomised prospective study)		Hendrickson 2012 – USTrauma (level I & II centresChidester 2012 – USmilitary hospitals)Edwards 2015 – Iraq andAfghanistanNecesser 2017 – USII centres		
		Nosanov 2013 - US		
Intervention		Comparator		
Hendrickson 2012 – MTP: designed for 5 different weight ranges (each pack containing equal volumes of PRBCs and FFP)		Hendrickson 2012 – Pre MTP: blood products at physician discretion (not described) Chidester 2012 – uncrossmatched blood at physician		
Chidester 2012 – uncrossmat	ched blood via MTP	discretion		
Edwards 2015 – higher doses of FFP/PRBCs and high volume of crystalloid		Edwards 2015 – comparison at varying doses		
Nosanov 2013 – high ratios of plasma/platelets to PRBCs		Nosanov 2013 – low, medium of plasma/platelets to PRBCs		
Population characteristics				

Paediatric patients, younger than 18 years, with traumatic injury requiring blood transfusion				
Length of follow-up	Outcomes measured			
Databases searched: CENTRAL, MEDLINE, EMBASE, Web of Science, The Joanna Briggs Institute EBP Database, CINAHL and AUSTHealth. No date restriction with the search run on February 29, 2016.	30-day mortality Unnecessary transfusion (morbidity and waste) Avoidable complications including ICU days and ventilator days			

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Critically low

Description: More than one critical flaw with or without non-critical weaknesses – the review has more than one critical flaw and *should not be relied on* to provide an accurate and comprehensive summary of the available studies. *Risk of bias of included studies*: All four included studies were of very low quality. This assessment was based mainly on high risk of selection bias and lack of allocation concealment.

RESULTS:						
Outcome No. patients (No. trials)	High ratio n/N (%) Mean ± SD	[comparator] n/N (%) Mean ± SD	Risk estimate (95% CI)	Statistical significance p-value Heterogeneityª l² (p-value)		
MTP versus No MTP						
Mortality Hendrickson 2012 (N = 102)	20/53 (38%)	11/49 (23%)	NR	No significant difference (implied a trend towards poorer outcomes with MTP use). ^b		
Chidester 2012 (N = 55)	45%	45%	NR	No significant difference. °		
Ventilator days						

STUDY DETAILS: Ma	w 2018			
Hendrickson 2012 (N = 102)	Median 2 days	Median 6 days	NR	NR
ICU days				
Hendrickson 2012	Median 7 days	Median 9 days	NR	NR
(N = 102)				
Thromboembolic events				MTP in this study associated
Chidester 2012 (N = 55)	NR	NR	NR	with fewer thromboembolic events
Varying ratios of FFP/	PRBCs			1
Mortality				Patients did not benefit from
Edwards 2015 (N = 301)	NR	NR	NR	ratios approaching 1:1 and found non-significant trends towards increased mortality
Nosanov 2013 (N = 105)	NR	NR	NR	with higher FFP/PRBC ratios
				No difference between groups
High vs low volume of	crystalloid (>150 ml	L/kg vs <150 mL/kg)		1
Mortality Edwards 2015	18%	10%	NR	Favours comparator (<i>p</i> = NR) Crystalloid infusions of >150 mL/kg were associated with significantly higher mortality
ICU davs				Favours comparator ($p = NR$)
Ventilator days				Crystalloid infusions of >150
Edwards 2015	NR	NR	NR	mL/kg were associated with significantly higher ICU and ventilator days
EXTERNAL VALIDITY	1	1		1
Generalisability (releva	ance of the study po	pulation to the Gui	delines target popul	lation)
The evidence is directly retrospective review of database.	generalisable to the 1300 injured childrer	Australian population presenting to US m	on with some caveats ilitary hospitals in Afg	:. Edwards 2015 was a ghanistan and Iraq via a trauma
Applicability (relevanc	e of the evidence to	the Australian hea	Ith care system)	
The evidence is probab is variability in the defir in not clear.	ly applicable to the A ition of massive tran	ustralian healthcare sfusion in children. A	context with some c Additionally, the defin	aveats. The reviewer's state there ition of MTP used in the studies
Additional comments				
Authors conclusions:				
There is little evidence f A goal-directed approa acid and fibrinogen rep evidence.	or improved outcom ch using viscoelastic lacement is consider	nes using componen haemostatic assay- red the way forward.	t-based transfusion in guided treatment wit This recommendatio	n a rigid 1:1:1 strategy in children. :h early institution of tranexamic on is based upon very low-quality
List of relevant included	d studies:			
Hendrickson 2012, Chid	ester 2012, Edwards 2	2015, Nosanov 2013		
21 further articles were	deemed relevant bu	t are not listed indivi	dually.	
CI, confidence interval; FFP, transfusion protocol; NF risk; SD, standard deviat a. Only applicable to Level I and I ² < 25%; (ii) mild het b. Authors concluded that N	fresh frozen plasma; ICU 9, not reported; PP, per-J ion; US, United States studies with formal met erogeneity if I ² < 25%; m ITP resulted in increase	J, intensive care unit; IT protocol; PRBC, packed a-analysis. Heterogene oderate heterogeneity d ratio of FFP:PRBC bu	T, intention-to-treat; MC red blood cell; RCT, rand ity defined as follows: (i) if I ² between 25–50%; su t did not change in-hosp), mean difference; MTP, massive domised controlled trial; RR, relative no significant heterogeneity if P _{het} > 0.1 bstantial heterogeneity I ² > 50%. pital mortality.
c. Authors conclude that MT	P had no effect on mor	tality (there was a trend	I towards poorer outcom	nes) compared with transfusion at

STUDY DETAILS: McQuilten 2018

Citation

McQuilten 2018

McQuilten ZK, Crighton G, Brunskill S, *et al.* Optimal dose, timing and ratio of blood products in massive transfusion: Results from a systematic review. *Transfusion Medicine Reviews.* 2018, 32: 6–15

Affiliation/Source of funds

Source of funds: Funding support from Australian National Blood Authority. McQuilten received funding support from National Health and Medical Research Council (NHMRC) Early Career Fellowship and NHMRC Centre for Research Excellence in Patient Blood Management in Critical Care and Trauma.

Conflicts of interest: Transfusion Research Unit of Monash University received financial support from Australian Red Cross Blood Service, New Zealand Blood Service, Victorian Department of Health and CSL Behring for the Australian and New Zealand Massive Transfusion Registry.

Author affiliations: Transfusion Research Unit, Monash University; Australian and New Zealand Intensive Care Research Centre; Systematic Reviews Initiative, NHS Blood and Transplant/Oxford University Hospitals NHS Trust

Study design	Level of evidence	Location	Setting	
Systematic review and meta-analysis of RCTs	1	North America, US, UK	Trauma centre	
Intervention		Comparator		
Blood component therapy (F fibrinogen concentrate) to R Holcomb 2015: 1:1:1 ratio 6 U F Transfused PLT first then alte units Nascimento 2013: 1:1:1 ratio Fiz	FP, platelets, CRYO or BCs FP: 1 PLT (~pool of 6 U): 6 RBC ernating RBC and plasma ked ratio of FFP:PLT:RBC	ComparatorDose, timing or ratio comparisonsHolcomb 2015: 1:1:2 ratio First pack 3 U FFP; 0 PLBCRBC (transfused 2 U RBC alternating 1 U FFP) Altpack 3 U FFP:1 PLT: 6 U RBC (transfused PLT first, 2 U RBC alterwith 1 U plasma)Nascimento 2013: Standard practice guided by latests.		

Population characteristics

Paediatric and/or adult who had critical bleeding and had received, or was anticipated to receive, a massive transfusion and measured at least one outcome of interest

Length of follow-up	Outcomes measured
Databases: Embase, Medline, PubMed, CENTRAL, DARE and NHSEED (The Cochrane Library), Transfusion Evidence Library Search dates: inception to 21 February 2017	Mortality, morbidity, transfusion requirements

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): High

Description: No or one non-critical weakness – the systematic review provides an accurate and comprehensive summary of the results of the available studies that address the question of interest.

Risk of bias of included studies: The main sources of bias risk were lack of blinding of participants and/or clinical and research staff and small sample sizes.

RESULTS:

Low ratio (1:1:1) n/N (%) Mean ± SD	High ratio (1:1:2) n/N (%) Mean ± SD	Risk estimate (95% CI)	Statistical significance p-value Heterogeneity p-value (I ²)			
rsus Transfusion ratio	1:1:2 (Question 3)					
88/378 (23.28)	94/377 (24.93)	RR 1.26 (0.49, 3.22)	No significant difference <i>p</i> = 0.64			
75/338 (22.2) 13/40 (32.5)	89/342 (26) 5/35 (14.3)	0.85 (0.65, 1.11) 2.27 (0.90, 5.74)	Moderate heterogeneity $p = 0.05$ (I ² = 75%)			
	Low ratio (1:1:1) n/N (%) Mean ± SD sus Transfusion ratio 88/378 (23.28) 75/338 (22.2) 13/40 (32.5)	Low ratio (1:1:1) High ratio (1:1:2) n/N (%) n/N (%) Mean ± SD Mean ± SD rsus Transfusion ratio 1:1:2 (Question 3) 88/378 (23.28) 94/377 (24.93) 75/338 (22.2) 89/342 (26) 13/40 (32.5) 5/35 (14.3)	Low ratio (1:1:1) n/N (%) High ratio (1:1:2) n/N (%) Risk estimate (95% Cl) Mean ± SD Mean ± SD Sisse Transfusion ratio 1:1:2 (Question 3) 88/378 (23.28) 94/377 (24.93) RR 1.26 (0.49, 3.22) 75/338 (22.2) 89/342 (26) 0.85 (0.65, 1.11) 13/40 (32.5) 5/35 (14.3) 2.27 (0.90, 5.74)			

STUDY DETAILS: McQ	uilten 2018			
ARDS (N = 680) Holcomb 2015	46/338 (13.6)	48/342 (14)	RR 0.97 (0.67, 1.41)	<i>ρ</i> = NR
AKI (N = 680) Holcomb 2015	74/338 (21.9)	85/342 (24.9)	RR 0.88 (0.67, 1.16)	ρ = NR
Sepsis (N = 680) Holcomb 2015	99/338 (28.9)	91/342 (26.6)	RR 1.10 (0.86, 1.40)	p = NR
MOF (N = 680) Holcomb 2015	20/338 (5.9)	15/342 (4.4)	RR 1.35 (0.70, 2.59)	<i>ρ</i> = NR
MI (N = 680) Holcomb 2015	0/338 (0)	2/342 (0.6)	RR 0.20 (0.01, 4.20)	<i>ρ</i> = NR
Stroke (N = 680) Holcomb 2015	8/338 (2.4)	11/342 (3.2)	RR 0.74 (0.30, 1.81)	<i>ρ</i> = NR
DVT (N = 680) Holcomb 2015	25/338 (7.4)	24/342 (7.0)	RR 1.05 (0.61, 1.81)	<i>ρ</i> = NR
Pulmonary embolus (symptomatic) (N = 680) Holcomb 2015	14/338 (4.1)	13/342 (3.8)	RR 1.09 (0.52, 2.28)	<i>ρ</i> = NR
Hospital-free days (N = 755)	Median (IQR)	Median (IQR)		
Holcomb 2015 (N = 680)	1 (0-17)	0 (0-16)	Not estimable	No significant difference p = 0.83
Nascimento 2013 (N = 75)	0 (0-15)	1.5 (0-12)	Not estimable	No significant difference p = 0.39
ICU-free days (N = 755)	Median (IQR)	Median (IQR)		
Holcomb 2015 (N = 680)	5 (0-11)	4 (0-10)	Not estimable	No significant difference p = 0.10
Nascimento 2013 (N = 75)	23 (12-26)	20 (5-24)	Not estimable	No significant difference p = 0.27
RBC in 24 hours (N = 680) Holcomb 2015	Median (IQR) 9 (5-15)	Median (IQR) 9 (9-16)	Not estimable	No significant difference p = 0.30
FFP in 24 hours (N = 680) Holcomb 2015	Median (IQR) 7 (3-13)	Median (IQR) 5 (2-10)	Not estimable	Favours intervention p < 0.001
PLT in 24 hours (N = 680) Holcomb 2015	Median (IQR) 12 (6-18)	Median (IQR) 6 (0-12)	Not estimable	Favours intervention p < 0.001
CRYO in 24 hours (N = 680) Holcomb 2015	Median (IQR) 0 (0-0)	Median (IQR) 0 (0-9)	Not estimable	Favours intervention p = 0.01
Number receiving >0 units CRYO in 24 hours (N = 680)	73/338 (21.6)	100/342 (29.2)	RR 0.74 (0.57, 0.96)	<i>ρ</i> = NR

STUDY DETAILS: McQuilten 2018

Median 25.5	Median 19	Not estimable	<i>ρ</i> = NR
21/37 (57)	2/32 (6)	9.08 (2.31, 35.77)	ρ < 0.01
	Median 25.5 21/37 (57)	Median Median 25.5 19 21/37 (57) 2/32 (6)	Median Median Not estimable 25.5 19 2/32 (6) 9.08 (2.31, 35.77)

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The study population in the systematic review is consistent with the Guideline's target population, i.e. patients who had critical bleeding and had received (or was anticipated to receive) a massive transfusion.

Applicability (relevance of the evidence to the Australian health care system)

Holcomb (2015) was conducted in major trauma centres around North America. Nascimento (2013) and Nascimento (2016) were conducted in a single trauma centre in Canada. Curry (2015) was conducted in two major civilian trauma centres in the UK. Nascimento (2013), Nascimento (2016) and Curry (2015) were conducted in a health system similar to Australia.

Additional comments

Authors conclusion:

Overall, there was no evidence of a difference in mortality between a 1:1:1 ration of FFP, PLT and RBC compared to 1:1:2 transfusion strategy or standard transfusion practice guided by laboratory parameters

List of included relevant studies

Holcomb 2015, Nascimento 2013, Nascimento 2016, Curry 2015

AKI, Acute kidney injury; ARDS, acute respiratory distress syndrome; CI, confidence interval; CRYO, cryoprecipitate; DVT, deep vein thrombosis; FFP, fresh frozen plasma; ICU, intensive care unit; ITT, intention-to-treat; IQR, inter quartile range; MD, mean difference; MOF, multiple organ failure; MI, myocardial infarction; PLT, platelet; PP, per-protocol; RBC, red blood cells; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: da Luz 2019

Citation

da Luz LT, Shah PS, Strauss R, Mohammed AA, D'Empaire PP, Tien H, et al. Does the evidence support the importance of high transfusion ratios of plasma and platelets to red blood cells in improving outcomes in severely injured patients: a systematic review and meta-analysis. Transfusion Medicine. 2019; 59: 3337-3349.

Affiliation/Source of funds

Author affiliations: LTdL, RS, AAM, HT, ABN and BN affiliated with Department Surgery, Sunnybrook Health Sciences Centre; PSS affiliated with Department of Pediatrics, Mount Sinai Hospital; and PPDE affiliated with Department Anesthesia, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.

Details on funding are not provided.

The authors declared no conflicts of interest.

Study design	Level of evidence	Location	Setting	
SR and MA of RCTs (2) and observational studies (53)	1-11/111	US, Japan, Multicentre, UK, Europe, Australia	Trauma (civilian and military), single and multi- centre settings	
Intervention		Comparator		
High ratios of FFP and/or PLTs:RBC		Lower ratios of FFP and/or PLTs:RBC		
Population characteristics		·		
Adult trauma patients (≥15 ye	ears)			
NOTE: Glaser 2015, Hardin 2014 in combat/military population. Haltmeier 2017 in TBI population				
Length of follow-up		Outcomes measured		
Databases searched: Medline, Embase, Cochrane Controlled Trials Register from inception to 31 July 2018		Mortality, 24 hours		

STUDY DETAILS: da Luz 2019

Also searched ClinicalTrials.gov and Google Scholar (first 200 hits)

Mortality, 30-days Allogenic blood products

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): High

Description: No or one non-critical weakness – the systematic review provides an accurate and comprehensive summary of the results of the available studies that address the question of interest.

Risk of bias of included studies: Overall, the evidence was of low quality for both mortality and exposure to allogenic blood products. The main limitation of the review is that most data are observational and thus survival bias, confounding, and publication bias are unavoidable.

RESULTS:				
Outcome No. patients (No. trials)	High ratio n/N (%) Mean ± SD	Low ratio n/N (%) Mean ± SD	Risk estimate (95% CI)	Statistical significance p-value Heterogeneityª
				l² (p-value)
FFP:PLTS:RBCs high (1:1:	1) versus low (approxim	ately 1:1:2)		
Mortality, 28/30 days 2 RCTs, N = 749	88/378 (23.3)	94/377 (25)	OR 1.35 (0.40, 4.59)	No significant difference p = 0.63
Holcomb 2015	75/338 (22.2)	89/342 (26)	OR 0.81 (0.57, 1.15)	Substantial
Nascimento 2013	13/40 (32.5)	5/35 (14.3)	OR 2.89 (0.91, 9.17)	heterogeneity ² = 76% (p = 0.04)
FFP:RBC 1:1 versus <1:1		·		·
Mortality, 24 hours 5 observation studies N = 2414	126/738 (17.1)	420/1676 (25.1)	OR 0.34 (0.14, 0.82)	Favours high ratio p = 0.02 Substantial heterogeneity
Balvers 2017	89/210 (42.4)	65/169 (38.5)	OR 1.18 (0.78, 1.78)	l² = 88% (<i>p</i> <0.00001)
Maegele 2008	13/115 (11.3)	158/484 (32.6)	OR 0.26 (0.14, 0.48)	
Perkins 2009	5/96 (5.2)	75/209 (35.9)	OR 0.10 (0.04, 0.25)	
Vulliamy 2017	8/107 (7.5)	9/54 (16.7)	OR 0.40 (0.15, 1.12)	
Wafaisade 2011	11/210 (5.2)	113/760 (14.9)	OR 0.32 (0.17, 0.60)	
Mortality, 30-days 10 observation studies N = 4203	308/1270 (24.3)	922/2933 (31.4)	OR 0.38 (0.22, 0.68)	Favours high ratio p = 0.001 Substantial heterogeneity
Duchesne 2008	18/71 (23.4)	56/64 (87.5)	OR 0.05 (0.02, 0.12)	l ² = 91% (p <0.0001)
Duchesne 2009	13/46 (28.3)	22/43 (51.2)	OR 0.38 (0.16, 0.90)	
Haltmeier 2017	53/156 (34)	46/86 (53.5)	OR 0.45 (0.26, 0.77)	
Holcomb 2011	65/216 (30.1)	101/211 (47.9)	OR 0.47 (0.32, 0.70)	
Maegele 2008	28/115 (24.3)	220/484 (45.5)	OR 0.39 (0.24, 0.61)	
Perkins 2009	15/96 (15.6)	86/150 (57.3)	OR 0.14 (0.07, 0.26)	
Sambasivan 2011	47/202 (23.3)	126/979 (12.9)	OR 2.05 (1.41, 2.99)	
Vulliamy 2017	25/107 (23.4)	15/54 (27.8)	OR 0.79 (0.38, 1.67)	
Wafaisade 2011	31/210 (14.8)	194/760 (25.5)	OR 0.51 (0.33, 0.76)	
Zink 2009	13/51 (25.5)	56/102 (54.9)	OR 0.28 (0.13, 0.59)	
FFP:RBC 1:1.5 versus <1:1.	5			
Mortality, 24 hours	10/58 (17.2)	19/60 (31.7)	OR 0.43 (0.18, 1.06)	Favours high ratio
2 observation studies				p = 0.07
N = 118				No heterogeneity
Bui 2016	7/49 (14.3)	17/54 (31.5)	OR 0.36 (0.14, 0.97)	l² = 0% (p = 0.41)

STUDY DETAILS: da Lu	uz 2019			
Kudo 2013	3/9 (33.3)	2/6 (33.3)	OR 1.00 (0.11, 8.95)	
Mortality, 30-days	123/715 (17.2)	219/654 (33.5)	OR 0.42 (0.22, 0.81)	Favours high ratio
5 observation studies				p = 0.01
N = 1369				Substantial
Borgman 2007	31/162 (19.1)	20/31 (64.5)	OR 0.13 (0.06, 0.30)	heterogeneity
Hardin 2014	36/283 (12.7)	82/283 (29)	OR 0.36 (0.23, 0.55)	l² = 73% (p = 0.005)
Kudo 2013	4/9 (44.4)	2/6 (33.3)	OR 1.60 (0.19, 13.70)	
Lustenberger 2011	23/159 (14.5)	5/21 (23.8)	OR 0.54 (0.18, 1.62)	
Sperry 2008	29/102 (28.4)	110/313 (35.1)	OR 0.73 (0.45, 1.20)	
FFP:RBC 1:2 versus <1:2				
Mortality, 24 hours	134/664 (20.2)	226/724 (31.2)	OR 0.59 (0.43, 0.81)	Favours high ratio
6 observation studies				p = 0.001
N = 1388				Mild heterogeneity
Holcomb 2008	33/83 (40)	64/151 (42.4)	OR 0.90 (0.52, 1.55)	l² = 22% (p = 0.27)
Kim 2014	3/9 (33.3)	9/32 (28.1)	OR 1.28 (0.26, 6.24)	
Nardi 2015	3/96 (3.1)	8/130 (6.2)	OR 0.49 (0.13, 1.91)	
Rowell 2011	46/210 (22)	76/245 (31)	OR 0.62 (0.41, 0.95)	
Synder 2009	24/60 (40)	43/74 (58.1)	OR 0.48 (0.24, 0.96)	
Stanworth 2016	25/206 (12.1)	26/92 (28.3)	OR 0.35 (0.19, 0.65)	
Mortality, 30-days	631/1801 (35)	499/1048 (47.6)	OR 0.47 (0.31, 0.71)	Favours high ratio
10 observation studies				p = 0.0004
N = 2849				Substantial
Borgman 2011	145/422 (34.4)	109/237 (46)	OR 0.61 (0.44, 0.85)	heterogeneity
Holcomb 2008	78/151 (51.7)	40/83 (48.2)	OR 1.15 (0.67, 1.96)	l ² = 81% (<i>p</i> <0.00001)
Kim 2014	22/68 (32.4)	14/32 (43.8)	OR 0.61 (0.26, 1.46)	
Magnotti 2011	25/66 (37.9)	22/37 (59.5)	OR 0.42 (0.18, 0.95)	
Nardi 2015	13/96 (13.5)	26/130 (20)	OR 0.63 (0.30, 1.29)	
Peiniger 2011	203/445 (45.6)	104/167 (62.3)	OR 0.51 (0.35, 0.73)	
Rowell 2011	84/210 (40)	108/245 (44.1)	OR 0.85 (0.58, 1.23)	
Sharpe 2012	20/69 (29)	15/26 (57.7)	OR 0.30 (0.12, 0.76)	
Teixeira 2009	30/115 (26.1)	56/62 (90.3)	OR 0.04 (0.01, 0.10)	
Van 2010	11/159 (7)	5/29 (17.2)	OR 0.36 (0.11, 1.12)	

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population with some caveats. Some studies include combat/military patients which, while not directly generalisable to the population, can provide some guidance for Australian trauma patients. Other included studies were conducted in civilian populations in a wide range of ages which is reflective of the Australian population.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian healthcare context with few caveats. Studies conducted in Australia are directly applicable. Studies conducted in UK and Europe may be applicable to the Australian healthcare context.

Additional comments

Authors conclusions:

Randomised data have not shown a mortality benefit from higher ratios. Additionally, low quality observational evidence demonstrates a survival benefit in patients receiving higher transfusion ratios. However, results should be interpreted with extreme caution as research is limited by small sample sizes, lack of clinical trials and high probability of confounding. Larger prospective RCTs with several thousand patients would be required.

List of included relevant studies

RCTs: Holcomb 2015, Nascimento 2013

Observational: Vulliamy 2017, Balvers 2017, Haltmeier, Stanworth 2016, Hagiwara 2016, Bui 2016, Baysinger 2016, Nardi 2015, Glaser 2015, Mitra 2014, Kutcher 201, Kim 2014, Kahn 2014, Hardin 2014, Kutcher 2013, Kudo 2013, Holcomb 2013,

STUDY DETAILS: da Luz 2019

Halmin 2013, Sisak 2012, Sharpe 2012, Brown 2012, Wafaisade 2011, Spinella 2011, Simmons 2011, Sambasivan 2011, Rowell 2011, Peiniger 2011, Magnotti 2011, Lustenberger 2011, Holcomb 2011, Davenport 2011, Brown 2011, Borgman 2011, Van 2010, Mitra 2010, Zink 2009, Teixeira 2009, Synder 2009, Shaz 2009, Riskin 2009, Perkins 2009, Duchesne 2009, Dente 2009, Cotton 2009, Stinger 2008, Sperry 2008, Scalea 2008, Maegele 2008, Kashuk 2008, Holcomb 2008, Gunter 2008, Duchesne 2009, Duchesne 2008, Borgman 2007

Cl, confidence interval; FFP, fresh frozen plasma; OR, odds ratio; PLT, platelet; RBC, red blood cells; RCT, randomised controlled trial; SD, standard deviation; UK, United Kingdom; US, United States

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Kinslow 2020

Citation

Kinslow K, McKenney M, Boneva D, Elkbuli A. Massive transfusion protocols in paediatric trauma population: a systematic review. Transfusion Medicine. 2020; 30: 333-342.

Affiliation/Source of funds

Author affiliations: All authors affiliated with the Department of Surgery, Kendall Regional Medical Center, Miami, Florida. MM and DB affiliated with the University of South Florida, Tampa, Florida.

Details on funding are not provided.

The authors declared no conflicts of interest.

Study design	Level of evidence	Location	Setting	
SR of observational studies	1-111	US	Paediatric trauma	
Intervention		Comparator		
High ratios of blood products	S:	Other ratios of blood produ	icts:	
*Edwards 2015 ≥1; 1:1 FFP:R	BC	*Edwards 2015 ≤ 0.4, 0.4-	0.6, 0.6-0.8,	
*Nosanov 2013 >1:1 FFP:RBC; also >1:3 Platelet:RBC		*Nosanov 2013 <1:2 and 1:2-1:1 FFP:RBC; also 1:6 and		
investigated separately		1:6-1:3 Platelet:RBC investigated separately		
*Noland 2018 1:1 FFP:RBC		*Noland 2018 2:1 and 3:1 FFP:RBC		
*Cunningham 2019 ≥1:1 Plasma:RBC		*Cunningham 2019 <1:2, ≥1:2-<1:1 Plasma:RBC		
*Synder 2009 <1:2 FFP:RBC		*Synder 2009 <1:2 FFP:RBC		
*Butler 2019 >1:1 FFP:pRBC investigated separately	C; also ≥1:2 Platelet:pRBC	*Butler 2019 <1:2 and 1:2- and <1:2 Platelets:pRBC	I:1 FFP:pRBC; also no platelets nvestigated separately	

Population characteristics

Paediatric trauma patients with various injury severity scores.

One study (Edwards 2015) in combat population with predominately penetrative trauma. All other studies had majority blunt trauma.

Length of follow-up	Outcomes measured
Databases searched: PubMed, Google Scholar, Cochrane Library, Embase, Wiley Online Library and OVID.	Mortality
No restrictions on date of publication were included. Authors do not provide details of search dates (e.g. inception to 1 January 2019)	
INTERNAL VALIDITY	
Overall OUALITY of the systematic review (descriptive)	

Rating (AMSTAR): Critically low

Description: More than one critical flaw with or without non-critical weaknesses – the review has more than one critical flaw and *should not be relied on* to provide an accurate and comprehensive summary of the available studies. *Risk of bias of included studies:* No risk of bias for included studies was performed. Authors acknowledge limitations of individual studies, primarily differences in definitions in massive transfusion in paediatric patients.

STUDY DETAILS: Kinslow 2020				
RESULTS:				
Outcome	High ratio	Low ratio	Risk	Statistical significance
No. patients	n/N (%)	n/N (%)	estimate	<i>p</i> -value
(No. trials)	Mean ± SD	Mean ± SD	(95% CI)	Heterogeneity ^a
				l² (p-value)
High ratios versus lo	ower ratios			
Mortality, overall			NR	NR
6 studies, N = 1025				
Noland 2018	2:1 ratio: 10/35 (29) 3:1 ratio: 14/34 (39)	1:1 ratio: 6/39 (15)		Significant improvement in paediatric mortality with high ratio blood products
Cunningham	Medium ratio: 42/176 (24)	Low ratio: 38/163		
2019	High ratio: 15/126 (12)	(23)		No significant association of high ratio transfusions with
	Madium ratio $07/215/(51)$			improved mortality
Butler 2019	High ratio: $(6/76/77.9)$	Low ratio: 104/232		outcomes
	Fightatio. 40/150 (55.0)	(44.8)		
	Medium ratio: 6/43 (14)			
Nosanov 2013	High ratio: 11/34 (32.6)	Low ratio: 2/15		
		(15.5)		
Edwards 2015 Synder 2009	NR (18) 24/60 (40)	NR (8) 43/74 (58)		
Mortality. 24 hours	NR	NR	NR	NR
l study, N = NR				Significant improvement
Butler 2019				with high ratios FFP:RBC
High ratios versus lo	ower ratios			
DVT	Medium ratio: 10/215 (4.7)	Low ratio: 6/232	NR	NR
l study, N = NR	High ratio: 9/136 (6.6)	(2.6)		2:1 FFP:pRBC associated with
Butler 2019				6.9x increased risk for
				development of DVI
Pneumonia	NR	NR	NR	NR
1 study. N = NR				>2:1 Platelet:pRBC associated
Butler 2019				with 23.6x increased risk for
				development of pneumonia
				compared to lower ratios
EXTERNAL VALIDITY				
Generalisability (rele	evance of the study populat	ion to the Guideline	s target popul	ation)
The evidence is not directly generalisable to the Australian population and it is hard to judge whether it is sensible to apply. Authors do not provide sufficient details regarding individual study findings making it difficult to confidently apply to the Australian population.				
Applicability (relevance of the evidence to the Australian health care system)				
The evidence is not applicable to the Australian healthcare context. Authors do not provide details of study locations or sufficient details regarding individual study findings making it difficult to confidently apply to the Australian				

healthcare context.

Additional comments

Authors conclusions:

Existing evidence trends in the direction of supporting balanced approaches in paediatric populations.

STUDY DETAILS: Kinslow 2020

This review is a narrative review only with a lack of individual study data limiting the ability to make sound conclusions.

List of relevant included studies:

Butler 2019, Cunningham 2019, Edwards 2015, Noland 2018, Nosanov 2013, Synder 2009

Cl, confidence interval; DVT, deep vein thrombosis; FFP, fresh frozen plasma; NR, not reported; pRBC, packed red blood cells; RBC red blood cell; RR, relative risk; SD, standard deviation; US, United States

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Meneses 2020

Citation

Meneses E, Boneva D, McKenney M & Elkbuli A. Massive transfusion protocol in adult trauma population. American Journal of Emergency Medicine. 2020; 38: 2661-2666.

Affiliation/Source of funds

Author affiliations: All authors affiliated with Department of Surgery, Division of Trauma and Surgical Critical Care, Kendall Regional Medical Center, Miami, Florida, USA; DB and MM affiliated with Department of Surgery, University of South Florida, Tampa, Florida, USA.

The authors declared that the study received no funding.

The authors declared no conflicts of interest.

Study design	Level of evidence	Location	Setting
SR of observational studies	1-111	Not reported	Trauma
Intervention		Comparator	
High ratios of blood products		Lower ratios of blood products	

Population characteristics

Adult trauma patients age 15+ years as defined by the American College of Surgeons.

Individual study characteristics not described.

Length of follow-up	Outcomes measured
PubMed database searched from database inception to	Mortality
July 2020	

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

51/365 (41)

Rating (AMSTAR): Critically low

Description: More than one critical flaw with or without non-critical weaknesses – the review has more than one critical flaw and should not be relied on to provide an accurate and comprehensive summary of the available studies. *Risk of bias of included studies:* No risk of bias for included studies conducted or considered by the authors.

RESULTS:

Teixeria 2009 Kashuk 2008 Scalea 2008

Shaz 2010 Dente 2009 Borgman 2007

RESOLIS.				
Outcome No. patients (No. trials)	High ratio n/N (%) Mean ± SD	Low ratio n/N (%) Mean ± SD	Risk estimate (95% CI)	Statistical significance p-value Heterogeneityª I² (p-value)
High ratio versus Lov	w ratio			
Mortality	NR	NR	NR	Authors provide a
11 studies				narrative summary of
Holcomb 2015				studies. No data provided.
Duchesne 2008				

50/441 (11.5)

STUDY DETAILS: Meneses 2020

Sperry 2008 Holcomb 2008 Maegele 2008

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is not directly generalisable to the Australian population and it is hard to judge whether it is sensible to apply. Authors provide no study characteristics making is difficult to determine if the study's adult trauma population is generalisable to the Australian population.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is not applicable to the Australian healthcare context. The authors provide no study characteristics regarding locations and therefore it is not reasonable to conclude the applicability to the Australian healthcare context.

Additional comments

Authors conclusions:

A balanced transfusion of FFP:platelet:PRBC ranging between 1:1:1 and 1:1:2 has been associated with a decreased mortality as well as other complications. Early initiation of an MTP and faster timing of product delivery is also associated with less organ failure.

List of relevant included studies:

Holcomb 2015, Duchesne 2008, Teixeria 2009, Kashuk 2008, Scalea 2008, Shaz 2010, Dente 2009, Borgman 2007, Sperry 2008, Holcomb 2008, Maegele 2008

Cl, confidence interval; FFP, fresh frozen plasma; ITT, intention-to-treat; MD, mean difference; MTP, massive transfusion protocol; NR, not reported; PP, per-protocol; PRBC, packed red blood cell; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Richie 2	2020		
Citation			
Ritchie DT, Pilbrook FGA, Lea	adbitter S, Kokwe KN, Meehan	E, et al. Empirical transfusior	n strategies for major
hemorrhage in trauma patie	nts: a systematic review. Jourr	nal of Trauma and Acute Care	e Surgery. 2020; 88(6): 855-865
Affiliation/Source of funds			
Author affiliations: all author Aberdeen, Aberdeen, United	s affiliated with the School of I Kingdom.	Medicine, Medical Sciences a	nd Nutrition, University of
The authors declared no fun	ding or conflicts of interest.		
Study design	Level of evidence	Location	Setting
Systematic review of RCTs	1-11	North America, UK, Iran	Trauma
Intervention		Comparator	'
High ratios blood product		Lower ratios blood product	t
Holcomb 2015: 1:1:2		Holcomb 2015: 1:1:1	
Nascimento 2013: 1:1:1		Nascimento 2013: laboratory guided	
Population characteristics		'	
Trauma patients			
Length of follow-up		Outcomes measured	
Databases searched: Embase, Medline, CINAHL and Web of Science.		Mortality	
Searches were conducted M specified.	ay 2019. Date limits not		
INTERNAL VALIDITY		'	
Overall QUALITY of the syst	ematic review (descriptive)		
Rating (AMSTAR): Low			
Description: One critical flaw	with or without non-critical w	veaknesses – the review has a	a critical flaw and <i>may not</i>

STUDY DETAILS: Richie 2020

Risk of bias of included studies: the overall risk of bias for included studies was judged by the review authors to be high. There were concerns with attrition bias due to incomplete reporting.

RES	UĽ	TS
-----	----	----

RESULIS:				
Outcome	High ratio	Low ratio	Risk estimate (95%	Statistical significance
No. patients	n/N (%)	n/N (%)	CI)	<i>p</i> -value
(No. trials)	Mean ± SD	Mean ± SD		Heterogeneity ^a
				l² (p-value)
High ratio blood pro	duct versus Lower rat	io blood product		
Mortality, 24 hours				
1 study, N = 680				
Holcomb 2015	58/342 (17.0)	43/338 (12.8)	RR 1.33 (0.93, 1.92)	No significant difference
Mortality, 28/30 days	NR	NR	NR	NR
2 studies, N = 758				
Holcomb 2015	89/342 (26.0)	75/338 (22.2)	RR 1.17 (0.90, 1.53)	No significant difference
Nascimento 2013	11/37 (29.7)	NR	NR	NR
Hospital-free days,				
2 studies, N = 758				
	Median (IQR)	Median (IQR)		
Holcomb 2015	0 (0-16)	1 (0-17)	NR	No significant difference
Nascimento 2013	0 (0-15)	NR	NR	
Thromboembolic				
events				
2 studies, N = 758				
Hoicomb 2015	61/342 (17.84)	62/338 (18.34)	0.97 (0.71, 1.34)	No significant difference
	37 (8.1)	NR	NR	NR
MOF				
1 study, N = 680				
Holcomb 2015	15/342 (4.39)	20/338 (5.29)	0.74 (0.39, 1.42)	No significant difference
Sepsis				
1 study, N = 680		(/	
Holcomb 2015	91/342 (26.61)	99/338 (29.29)	0.91 (0.71, 1.16)	No significant difference
Volume, 24 hours				
1 study, N = 680				
HOICOMD 2015				Nie einen Genete 1966
RBC	9 (6, 16)	9 (5, 15)		No significant difference
Plasind	5 (2, 10) 6 (0, 12)	12 (6.18)		No significant difference
	0(0, 12)	(0, 0)		No significant difference
Crystalloids	66 (35 105)	63 (38 95)		No significant difference
Colloide	0.0(0.03)	0.0(0.0, 0.0)		No significant difference
	TV	0 (0, 0.0)		
Concreticability (rela	vance of the study as	pulation to the Cuida	lines target perulatio	n)
				"'
Appliechility (release	ing generalisable to the			
	ice of the evidence to	o the Australian health		
I ne evidence is direct	ly applicable to the Au	stralian nealthcare cor	ilext with few caveats	
Additional comment				
List of relevant includ	led studies:			

STUDY DETAILS: Richie 2020

Holcomb 2015, Nascimento 2013

Cl, confidence interval; CRYO, cryoprecipitate; ITT, intention-to-treat; MD, mean difference; MOF, multiple organ failure; NR, not reported; PP, per-protocol; RBC, red blood cell; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation, UK, United Kingdom a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1

and $l^2 < 25\%$; (ii) mild heterogeneity if $l^2 < 25\%$; moderate heterogeneity if l^2 between 25–50%; substantial heterogeneity $l^2 > 50\%$.

STUDY DETAILS: Rodriguez 2020

Citation

Rodriguez, HO., Rios, F., Rubio, C., Arsanios, DM., Herazo, F., Beltran, LM., Garcia, P., Cifuentes, A., Munoz, J. & Polania, J. 2020. Mortality in civilian trauma patients and massive blood transfusion treated with high vs low plasma: red blood cell ratio. Systematic review and meta-analysis. *Colombian Journal of Anesthesiology, 48*(3), 126-137. http://dx.doi.org/10.1097/CJ9.00000000000161

Affiliation/Source of funds

The authors declared they received no external funding.

Author affiliations: School of Medicine, Universidad de La Sabana, Chía, Colombia (HOR, FR, DMA, AFH, LMB, PC, AC, JM, JP)

Clínica Universidad de La Sabana, Chía, Colombia (FR)., Epidemiology Postgraduate Program, Facultad de Medicina, Universidad de la Sabana, Chía, Colombia (CR).

The authors declared no conflicts of interest.

Study design	Level of evidence	Location	Setting
SR and MA of observational studies	1-111	Individual study locations not included	Trauma
Intervention		Comparator	
High RBC:FFP ratio		Low RBC:FFP ratio	

Population characteristics

Trauma patients following a massive bleed

Length of follow-up	Outcomes measured
Databases searched: Medline, Medline In-Process & other non-indexed Citations, MEDLINE daily Update, EMBASE, PsycINFO and Lilacs from January 2007- June 2019	Mortality
INTERNAL VALIDITY	

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Moderate

Description: More than one non-critical weakness – the systematic review has more than one weakness but no critical flaws. It *may* provide an accurate summary of the results of the available studies that were included in the review. *Risk of bias of included studies*:

RESULTS:

Outcome No. patients (No. trials)	High ratio n/N (%) Mean ± SD	Low ratio n/N (%) Mean ± SD	Risk estimate (95% CI)	Statistical significance p-value Heterogeneity ^a I ² (p-value)
High FFP:RBC ratio vs low FF	P:RBC ratio			
30-day mortality	NR	NR	OR 0.79 (0.71, 0.87)	l ² = 86.3%
N = 11052 (22 studies)				
Holcomb 2013 (N = 418)	NR	NR	OR 1.99 (1.32, 2.98)	
Sperry 2008 (N = 415)	NR	NR	OR 0.73 (0.45, 1.20)	
Maegele 2008 (N = 713)	NR	NR	OR 0.51 (0.36, 0.71)	
Gunter 2008 (N = 259)	61/119 (52)	53/140 (37)	OR 0.43 (0.24, 0.76)	
Teixeira 2009 (N = 383)	NR	NR	OR 0.37 (0.26, 0.60)	
Dente 2009 (N = 73)	NR	NR	OR 0.56 (0.20, 1.55)	

STUDY DETAILS: Rodriguez 2020					
Zink 2009 (N = 452)	NR	NR	OR 0.43 (0.22, 0.83)		
Mitra 2010 (N = 331)	NR	NR	OR 0.93 (0.49, 1.74)		
Shaz 2010 (N = 190)	NR	NR	OR 1.18 (0.66, 2.10)		
Spoerke 2011 (N = 529)	NR	NR	OR 0.39 (0.25, 0.62)		
Rowell 2011 (N = 704)	NR	NR	OR 0.71 (0.53, 0.96)		
Peiniger 2011 (N = 1250)	NR	NR	OR 2.11 (1.65, 2.69)		
Borgman 2011 (N = 659)	NR	NR	OR 0.61 (0.44, 0.85)		
Spinella 2011 (N = 461)	NR	NR	OR 0.74 (0.40, 1.35)		
Wafaisade 2011 (N = 1362)	NR	NR	OR 0.66 (0.51, 0.85)		
Sharpe 2012 (N = 135)	NR	NR	OR 0.46 (0.23, 0.94)		
Nascimento 2013 (N = 69)	NR	NR	OR 4 (1.03, 16.3)		
Kudo 2014 (N = 15)	NR	NR	OR 0.8 (0.10, 6.35)		
Kim 2014 (N = 100)	NR	NR	OR 0.61 (0.26, 1.46)		
Peralta 2015 (N = 77)	NR	NR	OR 0.2 (0.07, 0.55)		
Holcomb 2015 (N = 680)	NR	NR	OR 0.81 (0.57, 1.15)		
Endo 2018 (N = 1777)	High ratio:	Low ratio:	OR 0.85 (0.60, 1.21)		
	70/237 (32.1)	100/014 (30.9)			
		226/726 (31.1)			
Mortality within 24 hr	NR	NR	OR 0.67 (0.60, 0.75)	l ² = 91.9%	
N = 10840 (27 studies)					
Holcomb 2013 (N = 418)	NR	NR	OR 1.81 (0.16, 2.81)		
Sperry 2008 (N = 415)	NR	NR	OR 0.28 (0.10, 0.80)		
Duchesne 2008 (N = 135)	NR	NR	OR 0.05 (0.02, 0.13)		
Maegele 2008 (N = 713)	NR	NR	OR 0.34 (0.22, 0.41)		
Kashuk 2008 (N = 140)	NR	NR	OR 0.54 (0.27, 1.06)		
Snyder 2009 (N = 134)	NR	NR	OR 0.48 (0.24, 0.96)		
Dente 2009 (N = 73)	NR	NR	OR 0.37 (0.11, 1.23)		
Zink 2009 (N = 452)	NR	NR	OR 0.07 (0.01, 0.55)		
Mitra 2010 (N = 331)	NR	NR	OR 0.32 (0.10, 1.08)		
Shaz 2010 (N = 190)	NR	NR	OR 1.8 (0.92, 3.54)		
Lustenberger (N = 229)	NR	NR	OR 0.08 (0.04, 0.16)		
Spoerke 2011 (N = 529)	NR	NR	OR 0.29 (0.16, 0.52)		
Rowell 2011 (N = 704)	NR	NR	OR 0.54 (0.38, 0.76)		
Peiniger 2011 (N = 1250)	NR	NR	OR 3.29 (2.52, 4.29)		
Magnotti 2011 (N = 103)	NR	NR	OR 0.39 (0.17, 0.89)		
Borgman 2011 (N = 659)	NR	NR	OR 0.47 (0.33, 0.68)		
Wafaisade 2011 (N = 1362)	NR	NR	OR 0.51 (0.36, 0.73)		
Brown 2012 (N = 604)	NR	NR	OR 0.37 (0.14, 0.95)		
Duchesne 2013 (N = 451)	311/365 (85.2)	59/86 (68.6)	OR 038 (0.22, 0.65)		
Simms 2014 (N = 151)	NR	NR	OR 0.19 (0.08, 0.45)		
Guirdry 2013 (N = 234)	122/156 (78.4)	58/78 (74.7)	OR 0.63 (0.35, 1.14)		
Kudo 2014 (N = 15)	NR	NR	OR 1 (0.11, 8.95)		
Kim 2014 (N = 100)	NR	NR	OR 0.08 (0.02, 0.39)		
Peralta 2015 (N = 77)	14/31 (46.7)	29/46 (63.6)	OR 0.15 (0.05, 0.45)		
Stanworth 2016 (N = 298)	NR	NR	OR 0.35 (0.19, 0.65)		
Holcomb 2015 (N = 680)	NR	NR	OR 0.71 (0.47, 1.09)		
Biasi 2011 (N = 393)			OR 1.54 (0.93, 2.54)		

STUDY DETAILS: Rodriguez 2020

5-9u RBC:	1-4u RBC:	
54/308 (25.9)	99/320 (30.9)	
>9u RBC:		
148/307 (48.2)		

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population with some caveats

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian healthcare context

Additional comments

Authors conclusions:

The use of high FFP:RBC ratio in civilian trauma patients and massive transfusion was associated with a lower mortality risk in the first 24hours and at 30 days when the observational trials were assessed.

Included studies:

Holcomb 2008, Sperry 2008, Duchesne 2008, Maegele 2008, Gunter 2008, Kashuk 2008, Teixeira 2009, Snyder 2009, Dente 2009, Zink 2009, Mitra 2010, Shaz 2010, Lustenberg 2011, Spoerke 2011, Rowell 2011, Peiniger 2011, Magnotti 2011, Borgman 2011, Biasi 2011, Spinella 2011, Wafaisade 2011, Brown 2012, Sharpe 2012, Duchesne 2013, Simms 2014, Guidry 2013, Nascimento 2013, Kudo 2014, Kim 2014, Peralta 2015, Stanworth 2016, Holcomb 2015, Endo 2018

Cl, confidence interval; FFP, fresh frozen plasma; ITT, intention-to-treat; MD, mean difference; NR, not reported; OR, odds ratio; PP, perprotocol; RBC, red blood cell; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation;

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Wirtz 2020

Citation

Wirtz MR, Schalkers DV, Gosling JC & Juffermans NP. The impact of blood product ratio and procoagulant therapy on the development of thromboembolic events in the severely injured hemorrhaging trauma patients. Transfusion. 2020; 60: 1873-1882

Affiliation/Source of funds

Author affiliations: MRW, DVS and NPJ affiliated with Department of Intensive Care and MRW affiliated with Trauma Unit, Department of Surgery, Amsterdam University Medical Centers, Amsterdam, The Netherlands; JCG affiliated with Trauma Unit, Department of Trauma Surgery, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands The authors declared no conflicts of interest.

Details on funding are not provided.

e .					
Study design	Level of evidence	Location	Setting		
Systematic review of RCTs and observational studies	1-11/111	USA, Europe, Asia, Canada, Global	Trauma		
Intervention		Comparator			
High ratio blood products (F	FP or PLT:RBC)	Lower ratio blood products (F	FP or PLT:RBC)		
Population characteristics		'			
Patients ≥16 years with sever	e trauma (ISS ≥16) resulting in	haemorrhage			
Length of follow-up		Outcomes measured			
Databases searched: Medline, PubMed and Embase. In addition, ongoing trials searched through <u>www.controlled-trials.com</u> and <u>www.clinicaltrials.gov</u> Search dates not provided		Thromboembolic events			
INTERNAL VALIDITY					
Overall QUALITY of the systematic review (descriptive)					
Rating (AMSTAR): Moderate					
Description: More than one r	non-critical weakness – the sys	tematic review has more than	one weakness but no critical		

flaws. It may provide an accurate summary of the results of the available studies that were included in the review.

STUDY DETAILS: Wirtz 2020

Risk of bias of included studies: Overall, the authors judged the included observational studies to be of moderate quality (based on the Newcastle-Ottawa scale). Overall quality of RCTs was also judged to be of moderate quality by the authors with performance and detection bias being of high risk due to the difficulty of blinding for transfusion status of patients.

RESULTS:

Outcome	Low ratio	High ratio	Risk estimate (95%	Statistical significance
No. patients	n/N (%)	n/N (%)	CI)	<i>p</i> -value
(No. trials)	Mean ± SD	Mean ± SD		Heterogeneity ^a
				l² (p-value)

Low ratio FFP:RBC versus High ratio FFP:RBC

Low ratio FFP:RBC Ver	LOW TALIO FFP:RBC Versus High ratio FFP:RBC					
Thromboembolic events (Risk of)	66/433 (15.2)	82/529 (15.5)	OR 0.66 (0.28, 1.56)	No significant difference $p = 0.34$		
3 studies, N = 962				No significant heterogeneity		
Guidry 2013	3/78 (3.9)	14/156 (9)	OR 0.41 (0.11, 1.46)	l ² = 45% (p = 0.16)		
Holcomb 2015 ^b	62/338 (18.3)	61/342 (17.8)	OR 1.03 (0.70, 1.53)			
Zielinski 2013	1/17 (5.9)	7/31 (22.6)	OR 0.21 (0.02, 1.91)			

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is not directly generalisable to the Australian population and it is hard to judge whether it is sensible to apply. The authors did not provide sufficient information regarding trauma injury (e.g., combat, civilian, etc.) therefore making it difficult to determine the generalisability of trauma patients with that of the Australian population.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats. The majority of studies were carried out in the USA; however, findings could be sensible translated to the Australian healthcare context. Studies in Europe are more easily applicable to the Australian healthcare context.

Additional comments

Authors conclusions:

incidence of thromboembolic events in severely injured trauma patients was 10%. No significant difference between the ratio of blood products and the risk of thromboembolic events.

List of relevant included studies:

Guidry 2013, Holcomb 2015, Zielinski 2013

Cl, confidence interval; FFP, fresh frozen plasma; ISS, injury severity score; MD, mean difference; OR, odds ratio; PLT, platelet; RBC, red blood cell, RCT, randomised controlled trial; SD, standard deviation; USA< United States of America

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

b. Numbers reported by Wirtz are different to that of Klienveld.

STUDY DETAILS: Kleinveld 2021 Citation Kleinveld DJB, van Amstel RBE, Wirtz MR, Geeraedts LMG, Goslings JC, et al. Platelet-to-red blood cell ratio and mortality in bleeding trauma patients: a systematic review and meta-analysis. Transfusion. 2021; 61: S243-S251. Affiliation/Source of funds Author affiliations: Department of Intensive Care Medicine, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Trauma, Department of Anesthesiology, Amsterdam UMC; Department of Trauma Surgery, OLVG Hospital, Amsterdam; Department of Intensive Care, OLVG Hospital, Amsterdam. Funding support was provided solely from institutional and/or departmental sources. Conflicts of interest: Dr Hollmann is Executive Section Editor Pharmacology with Anesthesiology and Section Editor Anesthesiology with the Journal of Clinical Medicine. He has received research funding from ZonMW, STW, SCA, ESA, Eurocept BV, Edwards Life Sciences. Dr Hollmann served as consultant for Eurocept BV and ECHO BV and received speakers fees from CSL Behring and BBraun. All other authors declared no conflicts of interest.

Study design	Level of evidence	Location	Setting
SR and MA of RCTs (5)	1-11	Not reported	Trauma

STUDY DETAILS: Kleinveld 2021						
Intervention			Comparator			
High ratios of plasma or platelet:RBC			Low ra	tios of plasma or platel	et:RBC	
Population characteristi	cs					
Trauma patients (≥16 year	rs)					
Length of follow-up			Outco	mes measured		
Databases searched: PubMed, Medline and Embase. In Mortality, 24-hours & 30-days						
addition, Clinicaltrials.gov	and controlled-trials	.com were	Throm	boembolic events		
searched for ongoing tria	ls.	•.	Organ	failure		
October 2020	n database inception	το	Correc	tion of coagulopathy		
INTERNAL VALIDITY						
Overall QUALITY of the s	systematic review (d	escriptive)				
Rating (AMSTAR): Modera	ate					
Description: More than or	ne non-critical weakn	ess – the syst	ematic	review has more than	one weakness but no critical	
flaws. It <i>may</i> provide an ac	curate summary of th	ne results of t	he avail	able studies that were	included in the review.	
Risk of bias of included st	udies: The overall qua	ality of the stu	udies wa	as judged by the reviev	v authors to be moderate. All	
strategy.	risk of bias due to the	impossibility	y or bind	ung of personnel to th	e anocation of treatment	
BESULTS:						
Outcome	High ratio	Low ratio		Disk estimate (95%	Statistical significance	
No. patients	n/N (%)	n/N (%)		CI)	p-value	
(No. trials)	Mean ± SD	Mean ± SD			Heterogeneity ^a	
					l² (p-value)	
High ratio platelet:RBC	versus Low ratio plat	telet:RBC		1	·	
Mortality, 24 hours	116/862 (13.5)	166/895 (18.	5)	OR 0.69 (0.53, 0.89)	Favours high ratio	
5 studies, N = 1757					p = 0.005	
					Moderate heterogeneity	
Nascimento 2013	8/37 (21.6)	3/32 (9.4)		OR 2.67 (0.64, 11.07)	l ² = 41% (p = 0.15)	
Holcomb 2015	43/338 (12.7)	58/342 (17.0)	OR 0.71 (0.47, 1.09)		
Gonzalez 2016	4/56 (7.1)	12/55 (21.8)		OR 0.28 (0.08, 0.92)		
Sperry 2018	32/230 (13.9)	60/271 (22.1)		OR 0.57 (0.35, 0.91)		
Baksaas-Aasen 2020	29/201 (14.4)	33/195 (16.9)		OR 0.83 (0.48, 1.42)		
Mortality, 30-days	194/862 (22.5)	243/895 (27	.2)	OR 0.78 (0.63, 0.98)	Favours high ratio	
5 studies, N = 1757					p = 0.003	
		_ (Moderate heterogeneity	
Nascimento 2013	11/37 (29.7)	3/32 (9.4)		OR 4.09 (1.03, 16.29)	l ² = 47% (p = 0.11)	
Holcomb 2015	75/338 (22.2)	89/342 (26.0))	OR 0.81 (0.57, 1.15)		
Gonzalez 2016	7/56 (12.5)	8/55 (14.5)	`	OR 0.84 (0.28, 2.50)		
Baksaas Aason 2020	51/230 (22.2)	55/105 (28 2))	OR 0.59 (0.40, 0.89)		
Thramhaamhalia	50/201 (24.5)	70/502 (11.0)		OR 0.04 (0.54, 1.52)	No significant difference	
events	(0.9)	70/592 (11.0)		OR 0.91 (0.64, 1.31)	no significant difference	
3 studies. N = 1187					p = 0.05 Moderate beterogeneity	
					$l^2 = 40\% (p = 0.19)$	
Holcomb 2015	39/338 (11.5)	37/342 (10.8)	OR 1.08 (0.67. 1.73)		
Gonzalez 2016	9/56 (16.1)	6/55 (10.9)	,	OR 1.56 (0.52, 4.73)		
Baksaas-Aasen 2020	17/201 (8.5)	27/195 (13.8)		OR 0.57 (0.30, 1.09)		
Multiple organ	309/825 (37.5)	308/859 (35	.9)	OR 1.24 (0.94, 1.64)	No significant difference	
dysfunction syndrome					p = 0.13	
5 studies, N = 1684					No heterogeneity	
					l ² = 0% (p = 0.93)	

STUDY DETAILS: Kleinveld 2021

Nascimento 2013	1/37 (2.7)	0/32	OR 2.67 (0.11, 67.89)	
Holcomb 2015	20/338 (5.9)	15/342 (4.4)	OR 1.37 (0.69, 2.73)	
Gonzalez 2016	2/56 (3.6)	3/55 (5.5)	OR 0.64 (0.10, 4.00)	
Sperry 2018	145/230 (63.0)	156/271 (57.6)	OR 1.26 (0.88, 1.80)	
Baksaas-Aasen 2020	141/164 (86.0)	134/159 (84.3)	OR 1.14 (0.62, 2.11)	

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is not directly generalisable to the Australian population but could be sensibly applied. Although not described, some populations may be in combat areas which may not be directly generalisable, however, the nature of trauma could be applied.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats. The authors do not provide details of study locations which may influence the applicability.

Additional comments

Authors conclusions:

ResusCitation with a high compared to low platelet:RBC ratio improves early and late mortality in patients with traumatic bleeding. The high platelet:RBC ratio did not influence the occurrence of organ failure. The optimal ratio for platelet:RBC and its effect on platelet function in traumatic bleeding remains to be determined.

List of relevant included studies:

Baksaas-Aasen 2020, Gonzalez 2016, Holcomb 2015, Nascimento 2013, Sperry 2018

L CI, confidence interval; OR, odds ratio; RBC, red blood cells; RCT, randomised controlled trial; SD, standard deviation

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Phillips 2021

Citation

Phillips AR, Tran L, Foust JE & Liang NL. Systematic review of plasma/packed red blood cell ratio on survival in ruptured abdominal aortic aneurysms. Journal of Vascular Surgery. 2021; 73(4): 1438-1444.

Affiliation/Source of funds

Author affiliations: ARP, LT and NLL affiliated with the Division of Vascular Surgery, Department of Surgery, University of Pittsburgh Medical Center; JEF affiliated with the University of Pittsburgh

The research was supported in part by the grand 5T32HL0098036 from the National Heart, Lung, and Blood Institute for ARP.

The authors declared no conflicts of interest.

Study design	Level of evidence	Location	Setting			
Systematic review of	1-111	Henriksson 2012 - Sweden	Single centre, surgical			
observational studies (7)		Not reported for other				
		studies				
Intervention		Comparator				
High FFP/RBC ratio		Lower FFP/RBC ratio				
Population characteristics						
Adults with a diagnosis of AA	A.					
Length of follow-up		Outcomes measured				
Database searches: PubMed inception to September 2019 of Controlled Trials (from Jan 2019) and Clinical trials apy (fi	and Embase (from database), Cochrane Central Register uary 1999 to September	Mortality				
Overall QUALITY of the systematic review (descriptive)						
Rating (AMSTAR): Low						
<i>Description:</i> One critical flaw with or without non-critical weaknesses – the review has a critical flaw and may not provide an accurate and comprehensive summary of the available studies that address the question of interest.						

STUDY DETAILS: Phillips 2021

Risk of bias of included studies: The overall risk of bias by the review authors was judged to be serious. A significant amount of bias in the overall judgement resulted from confounding. The presence of confounding in observational studies is difficult to account for and will often be inherent to the Study design.

RESULTS:

Outcome	High ratio	Low ratio	Risk estimate (95%	Statistical significance
No. patients	n/N (%)	n/N (%)	CI)	<i>p</i> -value
(No. trials)	Mean ± SD	Mean ± SD		Heterogeneity ^a
				l² (p-value)

High ratio FFP:pRBC versus Low ratio FFP:pRBC ^b

ingin acier i picze					
Mortality, 30-days	NR	NR	NR		
4 studies N = 580					
Mell 2010	13/87 (15)	16/41 (39)	OR 4.23 (1.23, 14.49)	p < 0.03	
Johansson 2007	17/50 (34)	46/82 (56)	NR	p = 0.02	
Johansson 2008	16/64 (25)	46/82 (56)	NR	p < 0.01	
Henriksson 2012	20/100 (20)	23/74 (31)	NR	p = 0.111	
Mortality					
2 studies, N = 101				No significant difference	
Hall 2013	21/68 (31)	6/21 (28)	NR	p > 0.05	
Tadlock 2010	1/4 (25)	6/8 (75)	NR	p = 0.222	
High tRBC:FFP versus Low tRBC:FFP					

Mortality, in-hospital Image: Mortality, in-hospital Mortality, in-hospital More Mark More M

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats. Locations of all studies was not reported making it difficult to know the direct applicability to the Australian healthcare context.

Additional comments Authors conclusions:

The use of a higher FFP:pRBC ratio will confer a survival benefit for patients undergoing open surgical repair for ruptured AAAs. However, the included studies had a severe risk of bias, and the quality of evidence was very low. Overall, further research is warranted.

List of relevant included studies:

Mell 2010, Kauvar 2011, Hall 2013, Johansson 2007, Johansson 2008, Tadlock 2010, Henriksson 2012

AAA, abdominal aortic aneurysm; CI, confidence interval; FFP, fresh frozen plasma; NR, not reported; OR, odds ratio; pRBC, packed red blood cells; SD, standard deviation; tRBC, total red blood cells

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet
 > 0.1 and I2 < 25%; (ii) mild heterogeneity if I2 < 25%; moderate heterogeneity if I2 between 25–50%; substantial heterogeneity I2 > 50%.
 b. Data sourced from primary studies.

STUDY DETAILS: Rijnhout 2021

Citation

Rijnhout TWH, Duijst J, Noorman F, Zoodsma M, van Waes OJF, et al. Platelet to erythrocyte transfusion ratio and mortality in massively transfused trauma patients. A systematic review and meta-analysis.

STUDY DETAILS: Rijnhout 2021

Affiliation/Source of funds

Author affiliations: Department of Surgery (T.W.H.R., R.H.), Alrijne Medical Center, Leiderdorp; Trauma Research Unit, Department of Surgery (T.W.H.R., O.J.F.vW., M.H.J.V., R.H.), Erasmus MC, University Medical Center Rotterdam, Rotterdam; Department of Anesthesiology and Pain Medicine (J.D.), Maastricht University Medical Center+, Maastricht; Military Blood Bank (F.N., M.Z.), Defense Healthcare Organization (R.H.), Ministry of Defense, Utrecht; and Department of Surgery (R.H.), Leiden University Medical Center, Leiden, The Netherlands.

The study was supported by the Dutch Department of Defense and the Dutch Army Health Insurance Foundation (SZVK).

The authors declared no conflicts of interest.

Study design	Level of evidence	•	Locati	on	Setting
SR and MA of RCTs (2) and	1-11/111		NR		Trauma, military and
observational studies (10)					civilian
Intervention			Comp	arator	
High ratio blood products			Lower	ratio blood products	
Population characteristics					
Trauma patients (by either b	lunt or penetrating	trauma) wi	th an IS	S ranging between 26 a	and 37
Length of follow-up			Outco	mes measured	
Databases searched: PubMe	d, CINAHL, Embase	,	Mortal	ity	
Cochrane			Transf	usion	
Citations published betwee January 2021	n database incept	ion and 21			
INTERNAL VALIDITY					
Overall QUALITY of the syst	ematic review (des	scriptive)			
Rating (AMSTAR): Moderate					
Description: More than one r flaws. It <i>may</i> provide an accur	non-critical weaknes ate summary of the	ss – the syst e results of t	ematic he avai	review has more than o lable studies that were	one weakness but no critical included in the review.
<i>Risk of bias of included studies:</i> the overall risk of bias for included RCTs was judged by the review authors to be high based on several components including randomisation processes, deviations, missing outcome and selective reporting. Non-RCTs were judged as critical risk mainly due to confounding and selection bias.					
RESULTS:					
Outcome	High ratio	Low ratio		Risk estimate (95%	Statistical significance
No. patients	n/N (%)	n/N (%)		CI)	<i>p</i> -value
(No. trials)	Mean ± SD	Mean ± SI	2		Heterogeneity ^a
					l² (p-value)
High PLT:RBC ≥0.7 versus L	ow PLT:RBC <0.7	1		1	
Mortality, 1-6 hours	5/143 (3.5)	63/525 (12)		OR 0.18 (0.07, 0.49)	Favours high ratio
2 studies, N = 668					p = 0.0007
			- 1		No significant
Brown 2012	2/116 (1.7)	49/488 (10	0.0)	OR 0.16 (0.04, 0.66)	$\frac{12}{12} = 0\% (p = 0.78)$
Simms 2014	3/27 (11.1)	14/57 (57.8)	OR 0.21 (0.05, 0.81)	1 ⁻ – 0% (p – 0.78)
High PLT:RBC ≥0.3 versus L	ow PLT:RBC <0.3				
Mortality, 24 hours	36/389 (9.3)	66/124 (53.	2)	OR 0.12 (0.08, 0.21)	Favours high ratio
2 studies, N = 413					p < 0.00001
		77/00/00			$l^2 = 0\% (p = 0.59)$
Lustenberger 2011	16/163 (9.8)	33/66 (50.0	(50.0) OR 0.11 (0.05, 0.22)		
	20/120 (15.9)	20/20 (20.5	<i>י</i> ן	UR 0.14 (0.07, 0.29)	
High PLI:RBC 20.5 Versus L	100 (000 (00)	70 (/1) (7 (7	77.0)		Faula una biala matia
Mortality, 24 hours	190/900 (20)	204/1105 (S	is.0j	UK U.46 (U.28, U.76)	ravours nightatio
5 SLUCIES, IN - 2145					μ = 0.002 Substantial beterogeneity
Cap 2017	7/70 (10)	76/344 (22	.1)	OR 0.39 (0.17, 0.89)	$l^2 = 75\% (p = 0.003)$

STUDY DETAILS: Rijnhout 2021				
Inaba 2010	100/409 (24.4)	141/248 (56.9)	OR 0.25 (0.18, 0.34)	
Perkins 2011	45/284 (15.8)	16/85 (18.8)	OR 0.81 (0.43, 1.52)	
Rowell 2011 (blunt)	29/145 (20)	93/310 (30)	OR 0.58 (0.36, 0.94)	
Rowell 2011 (penetrating)	15/72 (20.8)	58/176 (33.0)	OR 0.54 (0.28, 1.03)	
Mortality, 28/30 days	88/287 (30.7)	305/830 (36.7)	OR 0.68 (0.50, 0.91)	Favours high ratio
3 studies, N = 1117				p = 0.01
				No significant
Cap 2017	13/70 (18.6)	99/344 (28.8)	OR 0.56 (0.30, 1.08)	heterogeneity
Rowell 2011 (blunt)	54/145 (37.2)	136/310 (43.9)	OR 0.76 (0.51, 1.14)	l ² = 0% (<i>p</i> = 0.71)
Rowell 2011 (penetrating)	21/72 (29.2)	70/176 (39.8)	OR 0.62 (0.35, 1.13)	
RBC transfusion				Favours high ratio
4 studies, N = 1486				p = 0.06
Cap 2017	18 (8.3)	16 (7.4)	MD 2.00 (-0.10, 4.10)	No significant
Perkins 2011	29 (35.8)	27 (31.7)	MD 2.00 (-5.29, 9.92)	heterogeneity
Rowell 2011 (blunt)	18.2 (8.6)	17.7 (9.8)	MD 0.50 (-1.27, 2.27)	l ² = 0% (p = 0.74)
Rowell 2011 (penetrating)	20.9 (14.2)	19.2 (10.8)	MD 1.70 (-1.95, 5.35)	
Plasma transfusion				Favours high ratio
2 studies, N = 783				p = 0.01
				Mild heterogeneity
Cap 2012	12 (3.8)	9 (6)	MD 3.00 (1.91, 4.09)	l² = 37% (p = 0.71)
Perkins 2011	18.7 (29.8)	12 (21.1)	MD 6.70 (1.03, 12.37)	
High PLT:RBC ≥1 versus Lov	v PLT:RBC <0.5-1			
Mortality, 24 hours	149/704 (21.1)	203/793 (25.6)	OR 0.81 (0.30, 2.19)	No significant difference
3 studies, N = 1497				p = 0.68
				Substantial heterogeneity
Balvers 2017	76/150 (50.7)	78/235 (33.2)	OR 2.07 (1.36, 3.15)	l ² = 93% (p = 0.21)
Holcomb 2011	30/216 (13.9)	67/216 (31.0)	OR 0.36 (0.22, 0.58)	
Holcomb 2015	43/338 (12.7)	58/342 (17.0)	OR 0.71 (0.47, 1.09)	
Mortality, 28/30 days	143/591 (24.2)	193/590 (32.7)	OR 0.58 (0.35, 0.98)	Favours high ratio
3 studies, N = 1181				p = 0.04
				Moderate heterogeneity
Holcomb 2011	65/216 (30.1)	93/216 (43.1)	OR 0.57 (0.38, 0.85)	l ² = 64% (p = 0.06)
Holcomb 2015	75/338 (22.2)	89/342 (26.0)	OR 0.81 (0.57, 1.15)	
Nascimento 2013	3/37 (8.1)	11/32 (34.4)	OR 0.17 (0.04, 0.67)	
High PLT:RBC ≥1 versus Lov	v PLT:RBC 0.6 or <	1		
RBC transfusion, mean			MD -0.73 (-1.73, 0.28)	No significant difference
2 studies, N = 749				p = 0.16
				No significant
Holcomb 2015	9.7 (7.4)	10.3 (7.4)	MD -0.60 (-1.71, 0.51)	heterogeneity
Nascimento 2013	7.7 (3.1)	9 (6.2)	MD -1.30 (-3.67, 1.07)	I [∠] = 0% (p = 0.60)
Plasma transfusion, mean			MD 1.73 (0.87, 2.60)	Favours high ratio
2 studies, N = 749				p <0.0001
				No significant
Holcomb 2015	7.7 (7.4)	5.7 (6)	MD 2.00 (0.99, 3.01)	neterogeneity
Nascimento 2013	6 (3.1)	5 (3.9)	MD 1.00 (-0.68, 2.68)	1 ⁻ = 0% (p = 0.32)

STUDY DETAILS: Rijnhout 2021

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population with some caveats. Patients include both military and civilian trauma patients. While military trauma is not commonly observed in Australian population, there are various elements of military trauma (e.g., lost limb, haemorrhage, etc.) that can be translated to the Australian population.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats. Locations of studies were not reported, however, given the volume of studies identified, it is probable that management could be applicable to the Australian healthcare context.

Additional comments

Authors conclusions:

results imply that the optimal PLT/RBC transfusion ratio approaches 1:1. Higher ratios of PLT/RBCs are associated with lower mortality at 1 hour to 6 hours, 24 hours, and 28 days to 30 days. These results should be interpreted with caution since many source studies are prone for various types of bias. Therefore, high-quality RCTs to establish optimal PLT/RBC ratio in trauma patients requiring massive transfusion are urgently needed.

List of relevant included studies:

RCT: Holcomb 2015, Nascimento 2013

Observational: Balvers 2017, Brown 2012, Cap 2012, Holcomb 2011, Inaba 2010, Lustenberger 2011, Perkins 2011, Rowell 2011, Shaz 2010, Simms 2014

Cl, confidence interval; ISS, injury severity score; MD, mean difference; OR, odds ratio; PLT, platelet; RBC, red blood cell; RCT, randomised controlled trial; SD, standard deviation

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I²

> 50%.Randomised controlled trials

Randomised controlled trials

No additional studies identified.

Observational / cohort studies

No additional studies identified.

E4 RBC volume (Question 4)

Systematic reviews/meta-analyses

STUDY DETAILS: Patel 2014

Citation

Patel SV, Kidane b, Klingel M, and Parry N. Risks associated with red blood cell transfusion in the trauma population, a meta-analysis. *Injury, Int. J Care Injured.* (2014). 45: 1522–1533

Affiliation/Source of funds

Chaiwat 2009 (n = 14070)

Mahambrey 2009

Murrell 2005 (n = 275)

Phelan 2010 (n = 399)

(n = 260)

Author affiliations: London Health Sciences Centre, London Ontario Canada

Source of Funding: Details on funding not provided.

Conflict of interest: The authors declared no conflicts of interest.

connector interest. The dat			est.		
Study design	Level of eviden	ce	Location	Setting	
MA of level III studies	Level I/III (40 obs studies)	servational	Not reported	Reported for some studies, setting include ICU, trauma centres and military centre	
Intervention			Comparator		
RBC transfusion			No RBC transfusion		
Population characterist	tics	· · · ·			
Trauma patients not limited	d by trauma severit	y, mechanism	or pattern of injury		
Length of follow-up			Outcomes measure	d	
Citations published between 1947-2012 (Embase) or 1946-2012 (Medline). Literature search was conducted on 12 May 2012.			Mortality, Acute resp Acute lung injury (Al	jiratory distress syndrome (ARDS), _I), Multiorgan failure (MOF)	
INTERNAL VALIDITY		I			
Overall QUALITY of the sys	stematic review (d	escriptive)			
Rating (AMSTAR): Low Description: One critical flaw with or without non-critical weaknesses – the review has a critical flaw and may not provide an accurate and comprehensive summary of the available studies that address the question of interest. Risk of bias of included studies: No reference to a priori design or pre-specified methods, list of excluded studies not provided, no quantitative synthesis of publication bias. The authors stated that as all included studies were observational, cohort studies, they are at risk of selection bias and confounding. The representativeness of the cohorts was good in most studies. Transfusion data was also complete in most studies. Confounding from injury severity likely limited the strength of the association between transfusion and poor outcomes, which the authors tried to mitigate by only including studies that attempted to adjust for injury severity in the pooled analysis. As injury severity is also associated with the outcomes assessed, failure to adjust for it may introduce bias that favours the intervention. The					
RESULTS:					
Outcome No. trials (No. patients)	Intervention n/N (%) Mean ± SD	Comparator n/N (%) Mean ± SD	Risk estimate (9 CI)	5% Statistical significance p-value Heterogeneity p-value (l²)	
RBC transfusion vs no RB	C transfusion (con	tinuous varia	ble)		
Mortality 9 studies (N = 18 009) Barbosa 2011 (n = 704) Bochicchio 2008 (n = 1172)	NR	NR	OR 1.07 (1.04–1.10 (with each addition transferred) OR 1.05 (1.03, 1.07 OR 1.05 (1.03, 1.07)) Favours no RBC transfusion p < 0.001 Substantial heterogeneity p < 0.0001 ($I^2 = 82.9\%$)	

STUDY DETAILS: Patel	2014			
Robinson 2005 (n = 316)			OR 1.16 (1.09, 1.25)	
Spinella 2008 (n = 708)			OR 1.08 (1.04, 1.15)	
Silverboard 2005 (n = 102)				
MOF	NR	NR	OR 1.08 (1.02–1.14)	Favours no RBC transfusion
3 studies (N = 3050)			(with each additional unit	p = 0.012
			transferred)	Substantial heterogeneity p <
				0.0001 (l ² = 95.9%)
Ciesla 2005 (n = 1344)			3.40 (2.53, 4.58)	
Cotton 2009 (n = 266)			2.90 (1.20, 8.70)	GRADE: low certainty of evidence
Johnson 2010 (n = 1440)			8.60 (4.20, 17.70)	
ARDS/ALI	NR	NR	OR 1.06 (1.03–1.10)	Favours no RBC transfusion
2 studies (N = 14 136)			(with each additional unit	p < 0.001
			(ransierred)	No heterogeneity
			106 (103 110)	p = 0.886 (l ² = 0.0%)
Chaiwat 2009 (n = 14070)			109 (074 158)	
Edens 2010 (n = 66)				GRADE: low certainty of evidence
RBC transfusion vs no RB	C transfusion (di	chotomous varial	ble)	
Mortality	NR	NR	OR 3.15 (1.82–5.46)	Favours no RBC transfusion
6 studies (N = 57 875)				<i>p</i> < 0.001
				Substantial heterogeneity
Croce 2005 (n = 5260)			2.46 (2.00, 3.20)	p < 0.0001 (l² = 94.6%)
Dunne 2004 (n = 9539)			4.23 (3.07, 5.84)	
Malone 2003 (n = 15534)			2.83 (1.82, 4.40)	GRADE: low certainty of evidence
Robinson 2005 (n = 319)			4.75 (1.37, 16.40)	
Texelfa 2008 (n = 25599)			6.70 (6.10, 7.50)	
vveinberg 2008 (n = 1624)			0.96 (0.48, 1.94)	
MOF 3 studies (N = 2,251)	NR	NR	OR 4.30 (2.36, 7.85)	Favours RBC transfusion (≤ 6 units)
				p < 0.0001
Ciesla 2005 (n = 1344)			3.40 (2.53, 4.58)	No significant heterogeneity
Moore 1997 (n = 513)			2.90 (1.20, 6.70)	p = 0.053 (l ² = 65.9%)
Sauaia 1994 (n = 394)			8.60 (4.20, 17.70)	
				GRADE: low certainty of evidence
ARDS/ALI	NR	NR	OR 2.04 (1.47, 2.83)	Favours no RBC transfusion
3 studies (N = 9,230)				p < 0.001
				No heterogeneity
Plurad 2007 (n = 2346)			1.98 (1.38, 2.83)	p = 0.761 (l ² = 0.0%)
Weinberg 2008 (n = 1624)			1.96 (0.73, 5.26)	
Croce 2005 (n = 5260)			3.42 (2.02, 34.20)	GRADE: low certainty of evidence
EXTERNAL VALIDITY				
Generalisability (relevance	e of the study po	pulation to the G	uidelines target populat	ion)
The evidence is directly ger	neralisable to the	Australian popula	tion with some caveats. T	he review included studies
reporting on trauma patier	nts with no limits	placed by trauma	severity, mechanism of ir	njury or pattern of injury. This
population is broader than	the Guideline's ta	arget population.		

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats. The location of the included studies is not stated and therefore it is unclear whether the individual studies were conducted in health care systems similar to the Australian health care system.

Additional comments

Authors conclusions:

STUDY DETAILS: Patel 2014

The authors have found an association between RBC transfusion and the primary (mortality) and secondary (MOF and ARDS/ALI) outcomes, based on observational studies with high heterogeneity.

List of relevant included studies:

Balogh 2003, Balogh 2003, Barbosa 2011, Bochicchio 2008, Chaiwat 2009, Charles 2007, Ciesla 2005, Cotton 2009, Croce 2005, Cryer 1999, Dewar 2009, Dunne 2004, Dunne 2006, Earley 2006, Eberhard 2000, Edens 2010, George 2008, Hensler 2003, Johnson 2010, Madigan 2008, Maegele 2009, Mahambrey 2009, Malone 2003, Miller 2002, Mitra 2007, Moore 1997, Mostafa 2004, Murrell 2005, Phelan 2010, Plurad 2007, Plurad 2008, Robinson 2005, Sakano 1994, Sauaia 1994, Sauaia 1998, Silverboard 2005, Spinella 2008, Texeira 2008, Weinberg 2008, Weinberg 2010

ALI, acute lung injury; ARDS, acute respiratory distress syndrome; CI, confidence interval; ICU, intensive care unit; MOF, multiorgan failure; NR, not reported; OR, odds ratio; RBC, red blood cell; SD, standard deviation

STUDY DETAILS: Balvers 2015

Citation

Balvers K, Wirtz MR, van Dieren S, Goslings JC & Juffermans NP. Risk factors for trauma-induced coagulopathy- and transfusion-associated multiple organ failure in severely injured trauma patients. *Frontiers in Medicine*, 2015; 2(article 24):1–11

Affiliation/Source of funds

Author affiliations: KB, MRW & JCG affiliated with Trauma Unit, Department of Surgery, Academic Medical Center, Amsterdam, Netherlands. KB, MRW & NPJ affiliated with Department of Intensive Care, Academic Medical Center, Amsterdam, Netherlands. SVD affiliated with Clinical Research Unit, Academic Medical Center, Amsterdam, Netherlands.

Source of funding: None reported

Conflict of interest: The authors declared that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Study design	Level of evidence	Location	Setting
Systematic review and meta-analysis of 46 observational cohort studies and 4 RCTs.	I (II and III studies)	Europe, USA, Asia, Canada, Africa, Worldwide	Not reported
Intervention		Comparator	
Transfusion strategies (admi	nistration of fluids and RBCs)	Placebo	

Population characteristics

Trauma patients aged \geq 16 years who suffered blunt or penetrating trauma, with mean injury severity score (ISS) \geq 16. Studies focused on patients with isolated traumatic brain injury (TBI) or burn injury were excluded.

All included studies, except Sigurddson et al (1992) which included critically ill patients, included trauma patients.

Length of follow-up	Outcomes measured
Databases searched – PubMed and Embase from 1986 to	Risk factors for trauma-induced coagulopathy (TIC)
2013. In addition, ongoing trials were searched on	Transfusion-associated multiple organ failure (MOF)
www.controlled-trials.com and www.clinical trials.gov	

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Critically low

Description: More than one critical flaw with or without non-critical weaknesses – the review has more than one critical flaw and should not be relied on to provide an accurate and comprehensive summary of the available studies.

Risk of bias of included studies: The authors note that the included studies have a considerable risk of bias related to Study design and methodology and several studies did not adjust for confounders. No reference to a priori design or pre-specified methods, list of excluded studies not provided, no quantitative synthesis of publication bias. No adjustments for confounders or assessment of the impact of risk of bias on results of the review. Sources of heterogeneity not explored.

STUDY DETAILS: Balvers 2015				
RESULTS:				
Outcome	Intervention	Comparator	Risk estimate	Statistical significance
No. trials (No.	n/N (%)	n/N (%)	(95% CI)	<i>p</i> -value
patients)	Mean ± SD	Mean ± SD		Heterogeneity
				<i>p</i> -value (l²)
TIC vs non-TIC	1			
Development of MOF	NA	NA	NA	Pooled analysis not
5 observational				reported due to
studies (N = 12 306)				substantial neterogeneity
D				Substantial
Brown 2012	170/439 (38.7)	398/1438 (27.7)	RR 1.40 (1.21, 1.62)	heterogeneity ($I^2 = 90\%$)
Cole 2013	17/42 (40.5)	25/116 (21.6)	RR 1.88 (1.13, 3.11)	5 5 ()
Kulcher 2012	11/24 (45.8)	15/108 (13.9)	RR 3.30 (1.74, 6.26)	
Maegele 2007	867/2989 (29.0)	688/5735 (12.0)	RR 2.42 (2.21, 2.65)	
Nydam 2011	82/192 (42.7)	196/988 (19.8)	RR 2.15 (1.75, 2.65)	
High FFP:RBC ratio ≥1:	1 vs FFP:RBC <1:1	1		
Development of MOF	744/1607 (46.3)	889/1960 (45.4)	RR 1.11 (1.04, 1.19)	Significant association
5 observational				p = 0.003
studies (N = 5431)				No significant
Borgman 2011	236/422 (55.9)	118/237 (49.8)	1.12 (0.96, 1.31)	heterogeneity
Hoicomb 2008	12/252 (4.8)	9/166 (5.4)	0.88 (0.38, 2.04)	p = 0.12 (1 ² = 45%)
Maegele 2008	133/229 (44.5)	220/484 (45.5)	1.28 (1.10, 1.48)	CDADE: low cortainty of
Sperry 2008	65/102 (63.7)	169/313 (54)	1.18 (0.99, 1.41)	evidence
	298/602 (49.5)	373/760 (49.1)	1.01 (0.90, 1.12)	
rvii vs piacebo				
	115/331 (34.7)	154/354 (43.5)	RR 0.81 (0.68, 0.98)	Favours placebo
2 RCIS (N = 874)				p = 0.03
Boffard 2009	7/69 (10.1)	16/74 (21.6)	0.47 (0.21, 1.07)	No significant
Hauser 2010	108/262 (41.2)	138/280 (49.3)	0.84 (0.69, 1.01)	$(l^2 = 44\%)$
Storage of RBCs				
Age of RBCs risk of				Significant association
MOF				p = 0.03
1 study (N = 63)	>14 days	≤14 days	OR 1.16 (1.02, 1.32)	Significant association
Zallen 1999	>21 days	≤21 days	OR 1.22 (1.06, 1.41)	p = 0.006
EXTERNAL VALIDIT	Ý	1	I	
Generalisability (releva	ance of the study popu	lation to the Guidel	ines target population)
The evidence is directly	generalisable to the Au	ustralian population.		
The study population ir	n this review included p	atients who suffered	blunt or penetrating tra	auma, with a mean ISS of
≥16. Patients with TBI a	nd burn injury were exc	luded. This is a narro	wer patient population	but is included in the
Guideline's target popu	lation with consistent o	definitions for blunt a	nd penetrating trauma	
Applicability (relevand	e of the evidence to the	ne Australian health	care system)	
The evidence is directly	applicable to the Austr	ralian healthcare con	text with few caveats.	
The review included studies	conducted in a variety of cou	intries including: Europe	(Cole, 2013; Maegele, 20	007; Borgman, 2011;
Imaegele, 2008; Watalsa	ade, 2011), USA (Brown, 2	2012; Kutcher, 2012; N	yaam, 2011; Holcomb, 20	008; Sperry, 2008), Asia,
Japan, Canada, Global (Hauser, 2010), Africa (Be	onard, 2009). htriog with a size its at	aalthaara ayatara aa Ay	etrolio
	urope may include cou	nthes with a similar r	learncare system as Au	ISU allà.
Additional comments				

Authors conclusion:

STUDY DETAILS: Balvers 2015

Early hypocoagulopathy and shock are risk factors for TIC-associated MOF in severely injured trauma patients. Later in the course of trauma, a hyper-coagulable state with the occurrence of thromboembolic events predisposes to MOF. Risk factors for transfusion-associated MOF include the administration of crystalloids and red blood cells and a prolonged storage time of red blood cells.

List of relevant included studies:

Boffard 2009, Borgman 2011, Brown 2012, Cole 2013, Hauser 2010, Holcomb 2008, Kutcher 2012, Maegele 2007, Maegele 2008, Nydam 2011, Sperry 2008, Wafaisade 2011, Zallen 1999

Cl, confidence interval; FFP, fresh frozen plasma; ISS, injury severity score; ITT, intention-to-treat; MD, mean difference; MOF, multiorgan failure; NA, not available; OR, odds ratio; PP, per-protocol; RBC, red blood cell; RCT, randomised controlled trial; RR, relative risk; rVII, recombinant factor VII; SD, standard deviation; TIC, trauma-induced coagulopathy; USA, United States of America

Prospective cohort studies

STUDY DETAILS: Liu 2018

Citation

Liu S, Fujii Q, Serio F & McCague. Massive blood transfusions and outcomes in trauma patients: an intention to treat analysis. Bulletin of Emergency and Trauma. 2018; 6(3): 217-220

Affiliation/Source of funds

Funding sources: Details on funding not provided.

Author affiliations: SL and AM affiliated with Natividad Medical Center, Salinas, California US. QF and FS affiliated with Touro University California, Vallego, California US.

Conflict of interest: The authors declared no conflicts of interest.

Study design	Level of evidence	Location	Setting
Prospective cohort	-2	California, US	Trauma, single centre
Intervention		Comparator	
Higher units of PRBCs (>10 units)		Lower units of PRBCs (0-9 units)	

Population characteristics

Patients ≥18 years with available blood transfusion information. Included patients were victims of various types of traumas who received between 0 and 87 units of PRBCs in the initial 24hrs.

Patients were between the ages of 18 and 89 years; made up of 32% female and 68% male.

Length of follow-up	Outcomes measured
Patients admitted to Natividad Medical Center's trauma	Mortality
service from July 1,2014 to July 1 2017	Overall LOS

Method of analysis

All data was compiled and analysed using a Microsoft Excel database. All graphs and tables were made using either Microsoft Excel or IBM SPSS. Mortality was calculated as a percentage for each group and odds ratios were calculated by generating an outcome frequency table. Mean ISS and hospital LOS were calculated, and Student's T-tests were performed to obtain *p*-values

INTERNAL VALIDITY

Overall risk of bias (descriptive)

Rating: Serious

Description: The study has some important problems and cannot be considered comparable to a well-performed randomised trial. The sample size was reasonable (N = 131). The authors calculated mortality as a percentage and ORs were calculated by generating an outcome frequency table. Student's t-test were performed to obtain *p*-values for mean LOS.

RESULTS

RESULIS					
Population analysed	Intervention		Comparator		
Available	36		95	95	
Analysed	36		95	95	
Outcome	Intervention n/N (%) Mean ± SD	Comparator n/N (%) Mean ± SD	Risk estimate (95% Cl)	Statistical significance p-value	
[intervention] vs [com	parator]	'			

7				
Mortality 0-9 units (n = 95) 10-19 units (n = 19) 20-29 units (n = 8) 30-39 units (n = 4) 40+ units (n = 5)	4/19 (21) 3/8 (38) 2/4 (50) 4/5 (80)	23/95 (24)	or 0.83 (0.25, 2.77) or 1.88 (0.42, 8.47) or 3.13 (0.41, 23.49) or 12.52 (1.33, 117.7)	OR for 40+ units was 12.52 and did not contain the null, indicating a statistically significant difference from control (0-9 units)
Overall LOS				No significant difference
0-9 units (n = 95)		10.1 ± 12.1		p = 0.793

STUDY DETAILS: Liu 2018

10-19 units (n = 19)	9.3 ± 5.5		p = 0.806
20-29 units (n = 8)	9.0 ± 8.0		p = 0.588
30-39 units (n = 4)	6.8 ± 6.0		p = 0.321
40+ units (n = 5)	4.6 ± 6.2		

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is not directly generalisable to the Australian population but could be sensibly applied

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats

Additional comments

Authors conclusions:

Although this study is limited by its sample size, results suggest that 40 units of PRBCs may be a threshold at which survival rates begin to decrease significantly.

CI, confidence interval; ISS, injury severity score; LOS, length of stay; OR, odds ratio; PRBC, packed red blood cell; SD, standard deviation; US, United States

Retrospective cohort studies

STUDY DETAILS: Hassanien 2015

Citation

Hassanien, M., El-Talkawy, M. D., El-Ghannam, M., El Ray, A., Ali, A. A., & Taleb, H. A. (2015). Predictors of In-Hospital Mortality in patients with hepatocellular carcinoma and Acute Variceal bleeding. Electronic Physician, 7(6), 1336–1343. doi:10.14661/1336

Affiliation/Source of funds

Source of Funding: The study was supported by Theodor Bilharz Research Institute.

Author affiliations: Hepatogastroenterology department, Department of Environment Research, Theodor Bilharz Research Institute, Giza, Egypt (M.H., M.E-T., M.E-G., A.E.R. & A.A.A), Biostatistics and Demography, Medical Statistician, Department of Environment Research, Theodor Bilharz Research Institute, Giza, Egypt (H.A.T).

Conflict of interest: The authors declared no conflicts of interest.

Study design	Level of evidence	Location	Setting
Retrospective cohort	111-3	Giza, Egypt	Single centre - Theodor Bilharz Research Institute
Intervention		Comparator	
Varying volume of transfusion of packed red blood cells (PRBCs)		not applicable	
Population characteristics		·	

Patients with liver cirrhosis and hepatocellular carcinoma presenting with acute upper gastrointestinal bleeding

Length of follow-up	Outcomes measured
Retrospective study of eligible patients from 1 November	In-hospital mortality
2013 to 31 December 2014	Complications

Method of analysis

All the data of the patients were registered as mean ± SE. Comparisons between groups were made using Fisher's exact and the chi squared tests for categorical variables and the Mann-Whitney tests for continuous variables. Twosided p-value less than 0.05 were considered statistically significant. Multivariate models were adjusted for age, gender, diagnosis, blood units, MELD score, and serum sodium at registration. The ability of the scoring systems to discriminate between hospital survivors and non survivors was assessed by using the area under the receiver operating characteristic (AUROC) curve.

INTERNAL VALIDITY

Overall risk of bias (descriptive)

Rating: Moderate

Description: The study appears to provide sound evidence for a non-randomised study but cannot be considered comparable to a well-performed randomised trial. The authors performed logistic regression analysis to identify independent predictors of in-hospital mortality. The sample size is small (N = 70).

RESULTS

Population analysed	Intervention (Survivors)		Comparator (Non-survivors)		
Available	32		38		
Analysed	32		38		
Outcome	Intervention Comparator		Risk estimate (95% CI)	Statistical significance	
	Mean ± SE	Mean ± SE		p	
Survivor vs non-survivor					
Unit of PRBCs transferred	1.9 ± 0.23	2.60 ± 0.74	NR	p < 0.01	
Logistic regression analysis of independent predictors of mortality	NR	NR			
Bags of PRBC			OR 1.38 (1.034, 1.452)	p < 0.01	
			OR 1.67 (1.124, 1.234)	p < 0.01	

STUDY DETAILS: Hassanien 2015 Oesophageal Varices Grade Image: Comparison of the study population to the Guidelines target population) EXTERNAL VALIDITY Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population with some caveats. The study included patients with liver cirrhosis and hepatocellular carcinoma with acute upper gastrointestinal bleeding, which may constitute a very small proportion of the Guidelines target population.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian healthcare context with few caveats. The study was conducted in a single hospital in Egypt.

Additional comments

Authors conclusions:

The number of units of packed red blood cell transfused, MELD score at cut-off value > 12.9, high grade of Esophageal Varices and active bleeding on index endoscopy, associated major comorbidity were highly predictive of in-hospital mortality.

AUROC, area under the receiver operating characteristic curve; CI, confidence interval; MELD, Model for End-Stage Liver Disease; not applicable, not applicable; NR, not reported; OR, odds ratio; PRBC, packed red blood cell; SE, standard error

E5 Recombinant activated factor VII (Question 5)

Systematic reviews/meta-analyses

STUDY DETAILS: Cannon 2017

Citation

Cannon, J.W., Khan, M.A., Raja, A.S., Cohen, M.J., Como, J.J., Cotton, B.A., Dubose, J.J., Fox, E.E., Inaba, K., Rodriguez, C.J. and Holcomb, J.B., 2017. Damage control resuscitation in patients with severe traumatic hemorrhage: a practice management guideline from the Eastern Association for the Surgery of Trauma. *Journal of Trauma and Acute Care Surgery*, 82(3), pp.605-617.

Affiliation/Source of funds

The authors declared no conflicts of interest.

Author BA Cotton is a consultant, Haemonetics Corporation. Remaining authors have no affiliations to disclose. Source of funding not disclosed.

Study design	Level of evidence	e L	Location Setting			
Systematic review and meta-analysis of RCTs and cohort studies (prospective and retrospective)	1 /11	N	Not specified Trauma			
Intervention	1	C	Comparator			
PICO 1: MT/DCR		P	PICO 1: No MT/DCR			
PICO 2: High ratio of FFP and	PLT to RBCs	P	PICO 2: Low ratio of FFP and PLT to RBCs			
PICO 3: rFVIIa		P	PICO 3: No rFVIIa			
PICO 4: TXA		P	PICO 4: No TXA			
Data for rFVIIa detailed below. Data for other interventions extracted elsewhere (Q2, Q3, Q7).						
Population characteristics						
Patients with severe trauma at risk of death from haemorrhage, defined as patients requiring blood transfusions and/or injury severity score greater than 25.						
Length of follow-up	,,,	0	Dutcomes measured	, i ,		
Databases searched: PubMed, Medline, Embase			Aortality (in hospital. 28 day or 30) dav). Blood products		
Search dates: Jan 1985 through December 2015			used (RBC in 24, 48, or 72 hours), Massive transfusion, Morbidity (venous thromboembolic events including deep vein thrombosis or pulmonary embolism)			
INTERNAL VALIDITY						
Overall QUALITY of the syste	ematic review (des	scriptive)				
Rating (AMSTAR): Moderate						
Description: More than one non-critical weakness – the systematic review has more than one weakness but no critical						
flaws. It may provide an accurate summary of the results of the available studies that were included in the review.						
Risk of bias of included studies: The authors did not provide a full list of excluded studies or details relating to risk of				etails relating to risk of		
bias assessments, but GRAD	E profiles were pres	ented. Inform	nation regarding individual studi	es were limited.		
RESULTS:	RESULTS:					
Outcome	rVIIa	No rVIIa	Risk estimate (95% CI)	Statistical significance		

No. trials (No. patients)	n/N (%) Mean ± SD (n)	n/N (%) Mean ± SD (n)		p-value Heterogeneity ^a Ι ² (p-value)
rVIIa versus no rVIIa				
Mortality, in-hospital, 28 or 30 days N = 1292 (2 RCTs, 3 Coh)	112/517 (21.7%)	237/775 (30.6%)	OR 0.88 (0.64, 1.20)	No significant difference $p = 0.42$

STUDY DETAILS: Cannon	2017			
				No significant heterogeneity
N = 825 (2 RCTs)	66/401 (16.5%)	71/424 (16.7%)	OR 0.97 (0.67, 1.41)	l ² = 15% (p = 0.32)
Boffard 2005	34/139 (24.5%)	40/144 (27.8%)	OR 0.84 (0.49, 1.43)	
Hauser 2010	32/262 (12.2%)	31/280 (11.1%)	OR 1.12 (0.66, 1.89)	No significant difference p = 0.88
				No heterogeneity
N = 467 (3 Cob)	46/116 (39.7%)	166/351 (33.0%)	OP 0 78 (0 43114)	l ² = 0% (p = 0.46)
Harrison 2005	12/29 (41 4%)	29/72 (40 3%)	OP 105 (0.44, 2.51)	
Pizoli 2006	19/38 (50%)	99/204 (48 5%)	OP 1.06 (0.53, 2.12)	No significant difference
Spipella 2008	15/49 (30.6%)	38/75 (50 7%)	OR (0.00 (0.00, 2.12))	p = 0.41
Spinella 2000	13/45 (30.070)	50,75 (50.770)	OR 0.45 (0.20, 0.52)	Moderate heterogeneity
				l ² = 44% (p = 0.17)
Transfusion volume, RBC ^b	(n = 424)	(n = 509)	MD -0 .92 (-2.31, 0.47)	No significant difference
N = 933 (2 RC1s, 2 Con)				p = 0.19
				No sign. heterogeneity
				$P^2 = 17\% (p = 0.30)$
N = 742 (2 RCTs)	(354)	(388)	MD -0.94 (-2.36, 0.48)	No significant difference
Boffard 2005 (blunt)	7.8 ± 12 (64)	7.2 ± 8.75 (72)	MD 0.60 (-2.97, 4.17)	p = 0.20
Boffard 2005	4 ± 9.25 (69)	4.8 ± 10.25 (61)	MD -0.80 (-4.17, 2.57)	No heterogeneity
(penetrating)	6.9 ± 10.4 (184)	8.1 ± 10.9 (222)	MD -1.20 (-3.28, 0.88)	$l^2 = 0\% (p = 0.80)$
Hauser 2010 (blunt)	4.5 ± 7.3 (37)	6.2 ± 6.5 (33)	MD -1.70 (-4.93, 1.53)	u /
Hauser 2010				
(penetrating)	(70)	(121)	MD -0.88 (-6.46, 4.71)	No significant difference
	29 (18.3 ± 7.5)	72 (22 ± 9)	MD –3.70 (–7.13, -0.27)	p = 0.76
N = 191 (2 Coh)	41 (16± 10.39)	49 (14 ±5.93)	MD 2.00 (–1.59, 5.59)	Substantial
Harrison 2005				heterogeneity
Spinella 2008				l ² = 80% (p = 0.02)
Need for massive	137/371 (36.9)	185/402	OR 0.68 (0.50, 0.92)	Favours rFVIIa
transfusion*				p = 0.01
N = 742 (3 RCTS)				Substantial
Boffard 2005a&b	12/114 (10.5)	155/297 (5/)	OR 0.33 (0.13, 0.69)	$\frac{1^2 - 79\%}{1^2 - 79\%} (p - 0.03)$
Hauser 2010	123/237 (40.0)	133/207 (34)	OR 0.01 (0.00, 1.13)	Γ = 75% (β = 0.05)
Venous thromboembolic	48/487 (9.9%)	57/574 (9.9%)	OR 0.97 (0.49, 1.92)	No significant difference
events				p = 0.94
N = 1061 (2 RCTs, 2 Coh)				Mild heterogeneity
				l² = 29% (p = 0.24)
	44/409 (10.8%)	43/428 (10.0%)	OR 1.10 (0.70, 1.72)	
N = 837 (3 RCTs)	6/139 (4.3%)	6/138 (4.3%)	OR 0.99 (0.31, 3.16)	No significant difference
Boffard 2005a&b	38/270 (14.1%)	37/290 (12.8%)	OR 1.12 (0.69, 1.82)	p = 0.68
Hauser 2010				No heterogeneity
	/ /70	1/ // /		P = 0% (p = 0.85)
N = 224 (2 Cob)	2/29 (69%)	14/140 14/71 (10 70/)	OR 1.10 (U.U5, 28.14)	No significant difference
Harrison 2005	2/29 (0.3%)	0/75 (0%)	OR 0.30 (0.00, 1.42)	p = 0.92
Spinella 2008				Substantial
				heterogeneity
				l² = 72% (p = 0.06)
Retrieved from primary stu	dy			
Acute respiratory distress	3/75 (4)	1/49 (2)	RR 1.96 (0.21, 18.31) ^c	No significant difference

STUDY DETAILS: Cannon 2017

Spinella 2008				p = 1.00
Multiple organ failure	4/75 (5)	1/49 (2)	RR 2.61 (0.30, 22.70)c	No significant difference
Spinella 2008				p = 0.65

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is generalisable to the Australian population with some caveats

Spinella 2008 is conducted in combat patients and may not closely reflect target population.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is applicable to the Australian healthcare context

Spinella 2008 is conducted in combat-related injuries and may not be directly applicable. Other studies were conducted at hospitals in countries including Australia, Canada, Germany and the United States and are therefore relevant to the Australian health care system.

Additional comments

Results were homogenous for all outcomes except for morbidity where the RCTs and retrospective studies had conflicting results

Authors conclusions:

For most bleeding trauma patients there does not seem to be clear significant mortality benefits from rFVIIa. If given early it may decrease the need for massive transfusion. The evidence for VTEs is limited. Experts were divided on Weak recommendation (36%) vs recommend against rFVIIa or data not sufficient to recommend either way (45%).

List of relevant included studies:

RCTs: Boffard 2005, Hauser 2010

Retrospective cohorts: Harrison 2005, Rizoli 2006, Spinella 2008

CI, confidence interval; DCR; damage control resuscitation; FFP, fresh frozen plasma; ITT, intention-to-treat; MD, mean difference; MT, massive transfusion' OR, odds ratio; PLT, platelets; RBCs, red blood cells; RCT, randomised controlled trial; SD, standard deviation; TXA, tranexamic acid

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

b. Total units in 24, 48, or 72 hours

c. Calculated post-hoc using RevMan 5.3. M-H Random effects.

STUDY DETAILS: McQuilten 2015

Citation

McQuilten, Z. K., Crighton, G., Engelbrecht, S., Gotmaker, R., Brunskill, S. J., Murphy, M. F., & Wood, E. M. (2015). Transfusion interventions in critical bleeding requiring massive transfusion: A systematic review. *Transfusion Medicine Reviews*, 29(2), 127-137. doi:http://dx.doi.org/10.1016/j.tmrv.2015.01.001

Affiliation/Source of funds

The study was funded by Australian NHMRC Centre of Research Excellence for Patient Blood Management in Critical Illness and Trauma (APP1049071).

Author affiliations: Monash University

Conflicts of interest: ZM and EW are employed by Monash University, whose Transfusion Research Unit has received financial support from Alexion, Amgen, Bayer, Celgene, CSL Behring, Janssen-Cilag, Takeda, Novartis, Australian Red Cross Blood Service, New Zealand Blood Service, Department of Health Victoria (Australia), NBA (Australia) and Myeloma Foundation of Australia. None of these funding sources had any involvement the design or conduct of this review.

Study design	Level of evidence	Location	Setting
Systematic review and meta-analysis SRs and RCTs	I	Australia Included studies: Not reported	Any clinical setting Dutton 2011: 150 hospitals, non-military trauma Houser 2010: 150 hospitals, non-military trauma Boffard 2005: 32 hospitals, non-military trauma

STUDY DETAILS: McQuilten 2015					
Interventions			Compara	ator	
1. RBC transfusion 2. FFP, CRYO, fibrinogen co complex concentrate, plate 3. rFVIIa (iv 200 g/kg at 0 ho	oncentrate, prothrom elet ours, 100 g/kg at 1 and	bin d 3 hrs)	Standard	l of care with placebo	
Data for rFVIIa detailed bel	OW.				
Data for other intervention	s extracted elsewher	e.			
Population characteristics	S				
Patients who had critical b RCTs Dutton 2011: Blunt and/or p lower extremity bleeding a	leeding or were antic penetrating trauma p fter receiving 4 units	ipated to re atients; age RBC despit	eceive a ma ed 18 to 70 te standard	assive transfusion in a years with continuing d haemostatic interve	any clinical setting. g torso and/or proximal entions.
extremity bleeding after re	ceiving 4 units RBC o	despite stan	idard haen	nostatic interventions	5.
Boffard 2005: Blunt and/or SRs	penetrating trauma,	aged ≥16 –	<65 years \	who received 6 RBC ι	inits within 4 hours.
Simpson 2012: Bleeding pa	itients without haem	ophilia			
Marti-Caravajal 2012: liver d	lisease and upper gas	strointestina (a a d b a a b	al bleeding	3	
Levi 2010: off-label indicatio	ons pleeding patients	and healt		ers)	
Databases: EMBASE, CINH,	AL, MEDLINE, Cochra	ine library,	Mortality	, Length of stay, Seric	us adverse events,
Search dates: Citations pu	ence library J blished between M a	av 2009	Transfusion related adverse events, Morbidity, Transfusion rate		
and Nov 2012, with update	ed search conducted	d through			
to July 2014					
INTERNAL VALIDITY					
Overall risk of bias (descri	iptive)				
Rating (AMSTAR): Moderat	e		6 . I		
the review. The study did n publication bias. These are	ot search the grey lite not considered critic	e summary erature, pro al flaws.	vide a list (of excluded studies, a	nd did not assess
<i>Risk of bias of included studies:</i> The overall risk of bias for included studies was judged by the review authors to be low to moderate. All studies were sponsored by industry support or sponsorship. The authors stated that the RCTs included had good methodological designs in all facets of assessment. With regards to the SRs, included SRs were of high quality, and included quality assessment.					
RESULIS:	* F \/!!e	Disasha		Diele estimate	Chartistical significance
No. patients (No. trials)	n/N (%) Mean ± SD	n/N (%) Mean ± S	D	(95% CI)	P-value Heterogeneity ^a I ² (p-value)
Bleeding patients (any)					
Mortality, not specified N = 2856 (1 SR, k=13 RCTs) Simpson 2012 (treatment of bleeding patients)	NR	NR		RR 0.91 (0.78, 1.06)	NR
Transfusion volume, mL RBC N = 911 (1 SR) Simpson 2012 (treatment of bleeding patients)	NR	NR		MD –89 (–264, 87)	NR
Thromboembolic adverse events	NR	NR		OR 1.17 (0.94, 1.47)	No significant difference p = 0.16
STUDY DETAILS: McQu	STUDY DETAILS: McQuilten 2015				
------------------------------	-------------------------------	---------------------	------------------------	---------------------------	--
N = 4119 (1 SR, k=35					
studies)					
Levi 2010 (off label use in					
bleeding patients)				0.007	
Arterial			OR 1.68 (1.2, 2.36)	p = 0.003	
Venous			OR 0.93 (0.70, 1.23)	p = 0.61	
Coronary			OR 2.39 (1.39, 4.09)	p = 0.002	
Cerebrovascular			OR 1.27 (0.74, 2.17)	p = 0.39	
Trauma setting	1	1	1		
Mortality, 30 day					
N = 573 (1 RCT)				No significant difference	
Hauser 2010				p = 0.40	
Penetrating and blunt	NR/267 (18%)	NR/287 (13%)	NR	p = 0.94	
Blunt trauma only	NR/221 (11%)	NR/247 (11%)	NR		
Transfusion volume, RBC					
units to 24 hrs					
N = 573 (1 RCT)				No significant difference	
Hauser 2010				p = 0.11	
Penetrating and blunt	4.5 ± 7.3 (n=267)	6.2 ± 6.5 (n=287)	NR	Favours rFVIIa	
Blunt trauma only	6.9 ± 10.4 (n=221)	8.1 ± 10.9 (n=247)	NR	ρ - 0.04	
Subaroup: patients requiring				Favours rEVIIa	
massive transfusion	14 + 304 (n=NP)	21 + 525 (n=NP)		n = 0.04	
Penetrating and blunt	111 + 50.2 (n=NR)	134 + 543 (n=NP)	NR	No significant difference	
Blunt trauma only	111 ± 30.2 (11-14K)	134 ± 34.3 (II-NR)	NR	n = 0.38	
				p = 0.50	
N = 277 (1 RCT)			estimated	No significant difference	
Boffard 2005	NR (n=69)	NR (n=74)	reduction ^b	n = 0.07	
Blunt	NR (n=70)	NR (n=64)	2.0 (0.0, 4.6)	p = 0.24	
Penetrating			0.2 (–0.9, 2.4)		
Transfusion volume,					
allogenic units to 24 hrs				No significant difference	
N = 573 (1 RCT)				p = 0.09	
Hauser 2010				Favours rFVIIa	
Penetrating and blunt	11.2 ± 15 (n=267)	16.8 ± 19.3 (n=287)	NR	p = 0.03	
Blunt trauma only	17.1 ± 26.8 (n=221)	20.7 ± 25.7 (n=247)	NR		
Thromboembolic events					
N = 560 (1 RCT)					
Dutton 2011				No significant difference	
Venous	25/270 (9)	26/287 (9)	NR	p = 0.90	
Arterial	16/270 (6)	12/290 (4)	NR	p = 0.33	
Multiorgan failure, 30 day					
N = 573 (1 RCT)					
Hauser 2010				No significant difference	
Penetrating and blunt	NR/267 (23)	NR/287 (24)	NR	p = 0.09	
Blunt trauma only	NR/221 (45)	NR/247 (53)	NR	p = 0.06	
ARDS	8/270 (3)	21/290 (7.2)	NR	Favours intervention	
N = 560 (1 RCT)				p = 0.02	
Dutton 2011					
All adverse events	240/270 (89)	256/290 (88)	NR	No significant difference	
N = 560 (1 RCT)				p = 0.82	

STUDY DETAILS: McQu	ilten 2015					
Dutton 2011						
Serious adverse events	165/270 (61)	197/290 (68)	NR	No significant difference		
N = 560 (1 RCT)				p = 0.09		
Dutton 2011						
Medical setting (GI bleedi	ing)					
Mortality, 5 days	NR	NR	RR 0.95 (0.36, 2.50)	No significant difference		
N = 510 (1 SR, k=2 RCTs)				p = 0.16		
Marti-Caravajal 2012						
Mortality, 42 days	NR	NR	RR 1.01 (0.55, 1.87)	No significant difference		
N = 510 (1 SR, k=2 RCTs)				p = 0.14		
Marti-Caravajal 2012						
Thromboembolic adverse	NR	NR	RR 0.80 (0.40, 1.6)	No significant difference		
events				p = 0.20		
N = 510 (1 SR, k=2 RCTs)						
Marti-Caravajal 2012						
EXTERNAL VALIDITY						
Generalisability (relevanc	e of the study po	pulation to the Guide	elines target population	l)		
The evidence is directly ge	neralisable to the	Australian population	with some caveats			
Applicability (relevance o	f the evidence to	the Australian healt	h care system)			
The evidence is directly ap	olicable to the Au	stralian healthcare co	ntext with few caveats			
Additional comments						
Authors conclusions:						
The available evidence con	firms that the off-	label use of rFVIIa in o	ritical bleeding or traum	na confers no benefit to		
mortality outcomes. In the	SR by Simpson et	al, there was a mode	st reduction in red cell tr	ansfusion requirements		
and blood loss; however, th	nis effect may have	e been overestimated	as some of the negative	ly weighted studies were		
not able to be incorporated into the meta-analysis. This possible benefit was offset by a trend toward an increased risk						
of thromboembolic events, and a significantly increased risk of arterial thromboembolic events when both						
prophylactic and therapeutic studies were considered. At present, the evidence does not support the routine use of						
rFVIIa as part of the treatment algorithm in the management of critical bleeding or as part of an MTP.						
3 DCTs: Dutton 2011 Hause	r 2010 Boffard 200	۲۵				
3 SDs: Simpson 2012: Marti-	Caravaial 2012: Los					
CB critical bleeding: CL confide	ence interval: d. dav:	hrs hours: MD mean dif	ference: MT_massive transfu	ision: MTP_massive transfusion		
protocol; NR, not reported;	RBC, red blood cell;	RCT, randomised contro	lled trial; RR, relative risk; SD	, standard deviation; SR,		
systematic review	dies with formal me	ta-analysis Heterogeneit	ty defined as follows: (i) no si	anificant beterogeneity if D		
>0.1 and I2 <25%; (ii) mild he	eterogeneity if I ² <25	%; moderate heterogene	ity if I ² between 25–50%; sub	estantial heterogeneity I ² >50%.		
b. Hodges-Lehmann point estimate of the shift in transfusion amount from placebo to active group, including 90% CI. Patients who						
alea within 40 hours were assigned the highest rank (see donald 2009).						
STUDY DETAILS: Mago	n 2012					
Citation						
Magon, N., & Babu, K. (2012). Recombinant Fa	ctor VIIa in Post-part	um Hemorrhage: A New	Weapon in Obstetrician's		
Armamentarium. N Am J Me	d Sci, 4(4), 157-162.	doi:10.4103/1947-2714.9	94938			
Affiliation/Source of fund	5					
The authors declared the s	tudy received no f	unding.				

The authors declared they had no conflicts of interest.

Department of Obstetrics and Gynaecology, Air Force Hospital, India

Study design	Level of evidence	Location	Setting
Systematic literature	I/ IV	India	Obstetrics and
review and case series			gynaecology

STUDY DETAILS: Ma	agon 2012				
Intervention Comparator					
rFVIIa			Not stated		
Population character	istics				
Women with post-part	tum haemorrh	age (intractable bleedi	ing with no ot	her obvious indic	ations for hysterectomy)
Length of follow-up/S	earch details		Outcomes n	neasured	
Databases searched: M	1edline		No outcome	s reported	
Search date: Not provi	ded				
INTERNAL VALIDIT	Y				
Overall QUALITY of th	ne systematic r	eview (descriptive)			
Rating (AMSTAR): Low					
Description: One critic	al flaw with or v	without non-critical we	eaknesses – th	ne review has a cr	itical flaw and may not
provide an accurate ar	nd comprehens	sive summary of the av	ailable studie	s that address th	e question of interest.
No studies were incluc	ded. Literature s	search details, study se	election criteri	a, or list of excluc	led studies not provided.
Risk of bias of included	d studies:				
RESULTS:					
Outcome	[interventior	n] [comparate	or] F	Risk estimate	Statistical significance
No. patients	n/N (%)	n/N (%)	(95% CI)	<i>p</i> -value
(No. trials)	Mean ± SD	Mean ± SD			Heterogeneity ^a
					l² (p-value)
Therapeutic rFVIIa ve	ersus no rFVIIa				
No studies found					
Generalisability (relev	ance of the st	udy population to the	e Guidelines t	arget populatior	ו)
No evidence presented	d in this SR				
Applicability (relevan	ce of the evide	ence to the Australian	health care	system)	
No evidence presented	d in this SR.				
Additional comments	5				
A case series of three patients was reported. The authors recommend rFVIIa be made available and considered early for cases of intractable PPH prior to hysterectomy. They suggest Hg should be above 7g/dL, INR <1.5, platelets above 50000/cumm, fibrinogen levels at minimum 100 mg/dL but preferably > 150 mg/dL, pH ≥ 7.2, and body temperature within physiological values. CI, confidence interval; Hg, haemoglobin; INR, international normalised ratio; rFVIIa, activated recombinant factor seven; SD, standard deviation					
STUDY DETAILS: OF	kanta 2012				
Citation					
Okanta, K.E., Edwin, F. & Falas, B. 2012. Is recombinant factor VII effective in the treatment of excessive bleeding after paediatric cardiac surgery? Interactive Cardiovascular and Thoracic Surgery, 15, 690-695.					
Affiliation/Source of funds					
The authors declared they had no conflicts of interest. Affiliation: Division of Cardiothoracic Surgery, Department of Surgery, University College Hospital, PMB 5116, Ibadan, Nigeria.					
Source of runds not reported Study design Cotting Cotting					
Systematic review of h	est evidence				Surgical
No RCTs identified (see comments below))				

Comparator

No rFVIIa

Intervention

rFVIIa to treat bleeding

Population characteristics

Children younger than 1 year of age, with excessive bleeding after cardiac surgery refractory to conventional methods of achieving haemostasis

Length of follow-up	Outcomes measured	
Medline using the PubMed interface	Chest tube drainage, plasma prothrombin time,	
Citations published between 1966 to Feb 2012.	activated partial thromboplastin time, reduction in	
	transfusion of blood products, thrombosis, death	

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Low

Description: One critical flaw with or without non-critical weaknesses – the review has a critical flaw and may not provide an accurate and comprehensive summary of the available studies that address the question of interest.

The study did not have independent data extraction. No list of excluded studies was provided, nor referenced. The authors did not mention formal strategies to rate the quality of the assembled evidence. The authors did not mention formal strategies to rate publication bias. Authors stated no conflict of interest, but no declaration of funding. *Risk of bias of included studies:*

RESULTS:

Outcome	rFVIIa	No rFVIIa	Risk estimate	Statistical significance		
No. trials (No.	n/N (%)	n/N (%)	(95% CI)	<i>p</i> -value		
patients)	Mean ± SD	Mean ± SD		Heterogeneity		
				l² (p-value)		

Therapeutic rFVIIa versus no rFVIIa

No studies met the

PICO criteria

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

NA

Applicability (relevance of the evidence to the Australian health care system)

NA

Additional comments

List of included studies (patients with critical bleeding)

Ekert 2006, Warren 2009, Karsies 2010, Agarwal 2007, Kylasam 2006, Pychynka-Pokarska 2004, Tobias 2004, Guzzetta 2009, Egan 2004, Niles 2008, Veldman 2007, Singh 2012, Razon 2005

CI, confidence interval; MA, meta-analysis; NA, not applicable; RCT, randomised controlled trial; SD, standard deviation; SR, systematic review

STUDY DETAILS: Simpson 2012

Citation

Simpson, E., Lin, Y., Stanworth, S., et al. 2012. Recombinant factor VIIa for the prevention and treatment of bleeding in patients without haemophilia. *Cochrane database of systematic reviews* (Online), 3, CD005011.

Affiliation/Source of funds

The authors declared potential conflicts of interest relating to involvement as study site investigator for off-label use of rFVIIa funded by Novo Nordisk (YL) and as past employee of the NHS blood and transplant service (CH).

Cochrane Review funded by the National Blood Service, Research and Development, UK; Canadian Blood Services, Canada; Department of Clinical Pathology, Sunnybrook Health Sciences Centre, Canada.

Study design	Level of evidence	Location	Setting
Systematic Review of RCTs	Level I	Hauser 2010: 26 countries	Multicentre, in-hospital
		Boffard 2005: Australia,	trauma, surgical, medical
		Canada, France, Germany,	
		Israel, Singapore, South	
		Africa, United Kingdom	

STUDY DETAILS: Simpso	n 2012			
		Bosch 2004: 26 hospitals		
		throughout Europe		
		Bosch 2008: 31 hospitals in 12		
		countries in Europe and Asia		
		Pihusch 2005: 46 study		
		locations in numerous		
		countries in US, UK, Europe		
		Chuqusumrit 2005: Thailand		
		Philippines		
		Narayan 2008: Canada,		
		Finland, Germany, India,		
		Israel, Italy, Singapore, Spain,		
		Switzerland, and Taiwan		
Intervention		Comparator		
This Cochrane review was br	oader than our study	Placebo		
population and included bot	h prophylactic and			
reporting therapeutic use of	rFVIIa to treat bleeding			
were extracted.				
Hauser 2010a&b: rFVIIa iv at t	0, 1, 3 hrs; total 400 µg/kg			
Boffard 2005a&b: rFVIIa iv at	0, 1, 3 hrs; total 400 µg/kg			
Bosch 2004: rFVIIa iv at 0, 2, 4	4, 6, 12, 18 & 24 hrs; total 700			
µg/kg				
Bosch 2008: rFVIIa iv at 0, 2, 8	3, 14, & 20 hrs; total 1000			
µg/kg				
<i>Pihusch 2005</i> : rFVIIa iv every μg/kg; total 280, 560, 1120	6 hrs at 40, 80 or 160			
Chuansumrit 2005: rFVIIa iv at 30 minutes if ongoing blee	100 μg/kg with repat dose eding			
Narayan 2008: rFVIIa iv singl	e dose 40, 80, 120, 160 or			
200 µg/kg within 2.5 hrs of C	Tscan			
Population characteristics				
Patients at risk of blood loss	due to surgery, or who had re	eceived treatment to manage b	leeding. The authors	
considered all age groups bu	It excluded patients with have	emophilia or other haemostatic	defects (for example,	
Study population of this Cool	a, innented factor vir dentier	an our study population and inc	luded patients with: stop	
cell transplantation, cirrhosis	complex non-coronary card	liac surgery requiring CPB, conc	aenital heart disease, elective	
cardiac revascularisation req	uiring CPB, cardiac valve rep	lacement requiring CPB, retrop	ubic prostatectomy, cardiac	
surgery requiring CPB and a	dmitted to a postoperative c	are, congenital craniofacial malf	ormation, thermal burn	
undergoing skin excision and	d grafting, liver carcinoma/m	letastasis, benign tumours or an	atomical/nonanatomical	
resection, spontaneous ICH,	reconstructive surgery, spina	li fusion surgery.		
Data from 9 RCTs conducted	in patients with critical bleed	ang were extracted.		
completed 8U within 12 hour	s of injury	auma and nad received minimul	m 40 RBCs but not	
Hauser 2010b: adult patients who had sustained penetrating trauma and had received minimum 4U RBCs but not completed 8U within 12 hours of injury				
Boffard 2005a: adult patients	s with severe bleeding due to	o blunt trauma		
Boffard 2005b: adult patients	s with severe bleeding due to	o penetrating trauma		
Bosch 2004: adult patients w	ith cirrhosis and upper gastr	rointestinal haemorrhage		
Bosch 2008: adult patients w	ith cirrhosis and upper gastr	ointestinal haemorrhage		
Pihusch 2005: patients (ageo	l >12 yrs.) with bleeding occu	rring 2 to 180 days after haemate	opoietic stem cell transplant	
Chuansumrit 2005: children	with dengue haemorrhagic	fever		
<i>Narayan 2008:</i> adult patient: hours of injury	s with traumatic ICH with co	ntusion of total volume of at lea	st 2 mL on CT scan within 6	

STUDY DETAILS: Simpson 2012				
Length of follow-up	Outcomes measured			
Follow-up generally not specified, but usually period of hospitalisation	Mortality Morbidity (bleeding and thromboembolic events) Transfusion volume RBCs			

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): High

Description: No or one non-critical weakness – the systematic review provides an accurate and comprehensive summary of the results of the available studies that address the question of interest.

Risk of bias of included studies: The overall risk of bias of the included studies was mainly judged to be low to unclear. In most cases, the threats to validity were assessed as minimal or 'unclear' because details were not provided in the publications.

Boffard 2005a and 2005b were judged as having a high risk of selective reporting bias, with important threats to validity, as patients who died within 48 hours were excluded from analysis and data for all patients were not available.

Hauser 2010a and Hauser 2010b were considered to have an unclear risk of bias due to unclear blinding of outcome assessment, which may have favoured the intervention. Chuansumrit 2005 was considered to have a high risk of bias due to no power calculations. Narayan 2008 was judged as having an unclear risk of bias due to inclusion criteria changing after 8% of participants entered the study.

RESULTS:					
Outcome	rFVIIa	No rFVIIa	Risk estimate (95% CI)	Statistical significance	
No. patients (No.	n/N (%)	n/N (%)		<i>p</i> -value	
trials)	Mean ± SD (n)	Mean ± SD (n)		Heterogeneity	
				l² (p-value)	
Therapeutic rFVIIa v	ersus placebo or n	o rFVIIa	1		
Mortality	332/1777	202/1079	RR 0.91 (0.78, 1.06)	No significant difference	
N = 2856 (13 RCTs)				p = 0.2	
(Includes patients with				No significant	
spontaneous ICH)				heterogeneity	
				l ² = 0% (p = 0.66)	
Mortality (patients					
with critical					
bleeding only)					
Hauser 2010a	26/224	28/250	RR 1.04 (0.63, 1.71)		
Hauser 2010b	8/46	5/40	RR 1.39 (0.49, 3.91)		
Boffard 2005a	17/69	22/74	RR 0.83 (0.48, 1.42)		
Boffard 2005b	17/70	18/64	RR 0.86 (0.49, 1.53)		
Bosch 2004	16/116	11/120	RR 1.50 (0.73, 3.10)		
Bosch 2008	39/170	25/86	RR 0.79 (0.51, 1.21)		
Pihusch 2005	24/77	7/23	RR 1.02 (0.51, 2.07)		
Chuansumrit 2005	0/16	0/9	Not estimable		
Narayan 2008	7/61	4/36	RR 1.03 (0.32, 3.29)		
Control of bleeding	300/380	183/236	RR 0.95 (0.88, 1.03)	No significant difference	
(number of patients				p = 0.21	
with reduced				No significant	
bleeding)				heterogeneity	
N = 616 (4 RCTs)				l² = 0% (p = 0.57)	
Bosch 2004	102/118	100/119	RR 0.97 (0.87, 108)		
Bosch 2008	142/170	66/86	RR 0.92 (0.80, 1.05)		
Pihusch 2005	44/76	13/22	RR 1.02 (0.69, 1.52)		
Chuansumrit 2005	12/16	4/9	RR 0.59 (0.27, 1.30)		

STUDY DETAILS: Si	impson 2012			
Total thromboembolic events N = 2856 (13 RCTs) (includes patients with spontaneous ICH)	169/1789	89/1084	1.14 (0.89, 1.47)	No significant difference p = 0.30 No significant heterogeneity $l^2 = 0.0\%$ ($p = 0.67$)
Total TE events (patients with critical bleeding only)				
Hauser 2010a	36/224	33/250	1.22 (0.79, 1.88)	
Hauser 2010b	2/46	4/40	0.43 (0.08, 2.25)	
Boffard 2005a	2/69	3/74	0.71 (0.12, 4.15)	
Boffard 2005b	4/70	3/64	1.22 (0.28, 5.24)	
Bosch 2004	7/121	7/121	1.00 (0.36, 2.76)	
Bosch 2008	9/176	7/89	0.65 (0.25, 1.69)	
Pihusch 2005	8/77	0/23	5.23 (0.31, 87.34)	
Chuansumrit 2005	0/16	0/9	Not estimable	
Narayan 2008	13/61	5/36	1.53 (0.60, 3.95)	
Transfusion volume RBCs, mL ª	(n = 443)	(n = 468)	MD88.60 (263.88, 86.68)	No significant difference <i>p</i> = 0.32
N = 911 (5 RCTs)				Mild heterogeneity
Hauser 2010a	2340 ± 3180 (191)	2730 ± 3390 (228)	-390.00 (-1020.09, 240.09)	l ² = 16% (p = 0.32)
Hauser 2010b	1500 ± 2220 (39)	2040 ± 2070 (35)	-540.00 (-1517.62, 437.62)	
Bosch 2004	450 ± 1110 (121)	390 ± 570 (121)	60.00 (–162.33, 282.33)	
Bosch 2008	764 ± 719 (76)	990 ± 930 (75)	-226.00 (-491.39, 39.39)	
Chuansumrit 2005 ⁰	131 ± 812 (16)	103 ± 102 (9)	28.00 (-375.41, 431.41)	

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population with some caveats

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian health care system with few caveats

The studies are conducted in multiple countries, including those with similar health care systems to Australia.

Additional comments

Authors conclusion:

The effectiveness of rFVIIa remains unproven. The results indicate increased risk of arterial events. The use of rFVIIa beyond licensed use should remain restricted to clinical trials.

There was no effect on mortality (RR 1.04; 95%CI 0.55 to 1.97). Modest benefits were found in the outcomes of blood loss and red cell transfusion requirements (less than one red cell unit saved with rFVIIa treatment); however, these favourable findings were likely overestimated because data were not available from larger negative studies for inclusion in the meta-analysis. A statistically non-significant trend towards an increased risk of thromboembolic events with rFVIIa was also observed.

List of included studies (patients with critical bleeding)

Hauser 2010, Riou 2005, Bosch 2004, Bosch 2008, Chuansumrit 2005, Pihusch 2005,

List of ongoing studies that may be relevant

Gajewski 2005, Gris 2006, Kelleher 2006, Gill 2009, McCall 2005

List of excluded studies (patients do not meet our PICO)

Narayan 2008

Cl, confidence interval; CPB, cardio-pulmonary bypass; ICH, intracranial haemorrhage; MD, mean difference; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation

a. Simpson 2012 noted that Boffard 2005a and Boffard 2005b reported data as median volume, and therefore were not included in the meta-analysis. The exclusion of these studies was considered unlikely to alter the pooled MD as the studies found no significant difference between treatment groups for this outcome at 48 hours.

Setting

Trauma

b. Simpson 2012 converted data provided as per kg to mL according to average weights for the mean age indicated.

STUDY DETAILS: Curry 2011 Citation Curry, N., Hopewell, S., Doree, C., Hyde, C., Brohi, K., & Stanworth, S. (2011). The acute management of trauma hemorrhage: A systematic review of randomized controlled trials. Critical Care, 15 (2) (no pagination)(R92). doi:http://dx.doi.org/10.1186/cc10096 Affiliation/Source of funds The study was funded by the National Institute for Health Research Programme Grant for Applied Research (RP-PG-0407-10036). Author affiliations: NHS Blood and Transplant, Systematic Review Initiative (SRI), NHS Blood and Transplant, John Radcliffe Hospital, Oxford, UK Cochrane Centre The authors declared they had no conflicts of interest. Study design Level of evidence Location Systematic review and T List countries of the included narrative analysis of RCTs studies not provided Intervention Comparator rFVIIa Standard of care (placebo) Boffard 2005: 400 µg/kg over 3 doses Hauser 2010: 400 µg/kg over 3 doses **Population characteristics** Patients with haemorrhagic shock within the first 24 hours of injury Boffard 2005: Adults patients with blunt or penetrating injury, requiring > 6U RBC in 4hrs Hauser 2010: Adult patients with blunt or penetrating injury with ongoing bleeding after 4U RBC Length of follow-up **Outcomes measured** Follow up of individual studies not reported Mortality Databases searched: Medline. Embase. Cochrane library Morbidity (Multiple organ failure rates, acute respiratory (CENTRAL, CCTR, Injuries Group specialist register), ICTRP, distress, infection) ClinicalTIrials.gov, NHSBT SRI) Transfusion volume (RBC, FFP) Citations published between database inception to

July 2010 **INTERNAL VALIDITY Overall QUALITY of the systematic review (descriptive)** Rating (AMSTAR): Moderate

Description: More than one non-critical weakness - the systematic review has more than one weakness but no critical flaws. It may provide an accurate summary of the results of the available studies that were included in the review. The review did not provide a list of excluded studies and did not assess publication bias. Reporting of outcome data was limited.

Risk of bias of included studies: The overall risk of bias for included studies was judged by the review authors to be unclear. The reporting in the studies was insufficient to make a judgement about the quality of the included studies with no explanations given for missing data. The bias is likely to favour the intervention.

Outcome No. patients (No. trials)	rFVIIA n/N (%) Mean ± SD	placebo n/N (%) Mean ± SD	Risk estimate (95% Cl)	Statistical significance p-value Heterogeneity ^a I ² (p-value)		
rFVIIa versus placebo						
Mortality	NR/412	NR/438	Not calculated	No significant difference		
N = 850 (3 RCTs)						
Boffard 2005a (blunt)	NR/69	NR/74		p = 0.58		
Boffard 2005b	NR/70	NR/64		p = 0.69		
(penetrating)	NR/226	NR/255		NR		
Hauser 2010 (blunt)	NR/47	NR/45		NR		

STUDY DETAILS: Curry 201	ו			
Hauser 2010 (penetrating)				
Transfusion volume, PRBC	(412)	(438)	NR	Favours rFVIIa
N = 850 (3 RCTs)				(blunt)
Boffard 2005a (blunt)	NR (69)	NR (74)		
Boffard 2005b	NR (70)	NR (64)		*Authors reported a trend
(penetrating)	NR (226)	NR (255)		penetrating trauma
Hauser 2010 (blunt)	NR (46)	NR (45)		
Hauser 2010 (penetrating)				
Multiple organ failure	NR/411	NR/438	NR	
R = 650 (3 RCTS)				ND (no difference)
Boffard 2005b				NR (no difference)
(penetrating)				NR (trend towards)
Hauser 2010 (blunt &	NR/272	NR/300		blunt injury)
penetrating)				
Acute respiratory distress	NR/411	NR/438	NR	
N = 850 (3 RCTs)				
Boffard 2005a (blunt)	NR/69	NR/74		NR (favours rFVIIa)
Boffard 2005b	NR/70	NR/64		NR (no difference)
(penetrating)	NR/272	NR/300		NR (trend towards in
Hauser 2010 (blunt &				blunt injury)
penetrating)	-			
Retrieved from primary studi	les			
Multiple organ failure			NR	
Boffard 2005 (blunt)	5/69 (7)	9/74 (12)		p = 0.41
Boffard 2005 (penetrating)	4/70 (6)	7/64 (8)		p = 0.09
Hauser 2010 (blunt)*	98/218 (45.0)	129/242 (53.3)		p = 0.06
Hauser 2010	10/44 (22.7)	9/38 (23.7)		p = 0.90
* Dopyor organ failure score >3				
through to day 30				
Acute respiratory distress			NR	
Boffard 2005a (blunt)	3/69 (4)	12/74 (16)		p = 0.03
Boffard 2005b	4/70 (6)	5/64 (8)		p = 0.74
(penetrating)				
Subgroup analyses of Boffar	d 2005a&b	1		1
Mortality	NR/86	NR/83	NR	Favours PT < 18 sec at 1
N = 169 (1 RCT)				hour in rFVIIa arm
McMullin 2010 (post-dose				p ≤ 0.001
PT ≥ 18 seconds)				
Massive transfusion ^b	NR (86)	NR (83)	NR	Favours PT < 18 sec at 1
N = 169 (1 RCT)				
McMullin 2010 (post-dose				p = 0.02
PT 2 18 seconds)				
Iransfusion volume, PRBC	NR (60)	NR (76)	NR	Favours rFVIIa
N = 136 (1 KCT)				p = 0.02
Rizoli 2006 (coagulopathic				
				$\sum_{n=1}^{\infty} \frac{1}{n} $
	INK (00)	INK (70)		
Dizoli 2006 (conquianathia				μ = 0.04
patients)				
p		<u> </u>		

STUDY DETAILS: Curry 2011 NR Transfusion volume, platelets NR (60) NR (76) No significant difference N = 136 (1 RCT) e = 0.09 Rizoli 2006 (coagulopathic patients) Multiple organ failure NR/139 NR/138 NR N = 277 (1 RCT) Rizoli 2006 (coagulopathic NR/60 NR/76 NR (trend towards) NR patients) Boffard 2009 (patients NR/69 (blunt) NR/74 OR 0.05 (0.0, NR surviving 48 hours or 0.89) NR/70 NR/64 Favours intervention more) (penetrating) NR (blunt) Acute respiratory distress N = 277 (1 RCT) NR/60 Rizoli 2006 (coagulopathic NR/76 NR NR (favours rFVIIa) patients) OR 0.16 (0.02, Boffard 2009 (patients NR (favours rFVIIa) NR/139 NR/138 surviving 48 hours or 0.73) more) NR/139 NR/138 OR 0.16 (0.02, Multiple organ failure and Favours rFVIIa (blunt acute respiratory distress 0.81) injury) N = 277 (1 RCT) NR Boffard 2009 (patients surviving 48 hours or more) **EXTERNAL VALIDITY** Generalisability (relevance of the study population to the Guidelines target population) The evidence is directly generalisable to the Australian population with some caveats Applicability (relevance of the evidence to the Australian health care system) The evidence is probably applicable to the Australian healthcare context with some caveats Additional comments Authors conclusions: The multifactorial nature of trauma haemorrhage, issues with trial design and conduct, and lack of co-ordinated

approach means only limited conclusions can be drawn. The available evidence does not demonstrate a correlation

between survival or reduction in transfusion requirements.

List of relevant included studies:

RCTs: Boffard 2005a&b, Hauser 2010

Subgroup analysis of Boffard 2005 a&b: Rizoli 2006, Boffard 2009, McMullin 2010

CCTR, Current controlled trials registry; CI, confidence interval; ICTRP, international clinical trials registry platform; ITT, intention-to-treat; MD, mean difference; NHSBT SRI, National Health Service blood and transplant systematic review initiative; PRBC, packed red blood cells; PT, prothrombin time; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} >0.1 and I2 <25%; (ii) mild heterogeneity if I² <25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² >50%.
 b. Massive transfusion defined as 20 units of RBC within 48 hr of admission.

STUDY DETAILS: Yank 2011

Citation

Yank, V., Tuohy, C.V., Logan, A.C., et al. 2011. Systematic review: benefits and harms of in-hospital use of recombinant factor VIIa for off-label indications. *Annals of Internal Medicine*, 154, 529-40.

Comparative Effective Review no. 21. Yank V, Tuohy CV, Logan AC, Bravata DM, Staudenmayer K, Eisenhut R, et al. Comparative effectiveness of recombinant factor VIIa for off-label indications versus usual care. Prepared by Stanford-UCSF Evidence-based Practice Center under contract no. 290-02-0017. Rockville, MD: Agency for Healthcare Research and Quality; 2011.

The full report was reassessed in August 2016 and conclusions were considered current.

STUDY DETAILS: Yank 2011

See https://effectivehealthcare.ahrq.gov/topics/recombinant-factor-viia/research

Affiliation/Source of funds

Primary funding provided by the US Agency for Healthcare Research and Quality, with additional support from the National Heart, Lung, and Blood Institute and the Palo Alto Medical Foundation Research Institute.

The authors declared potential conflicts of interest relating to employment (Stanford Hospital), grants (monies to institutions), travel for meetings, consultancy (Sanofi-Aventis), and expert testimony (Mylan Pharmaceuticals). Full disclosures are available online.

Study design	Level of evidence	Location	Setting	
Systematic review and meta-analysis of comparative studies	Level I	Boffard 2005: Australia, Canada, France, Germany, Israel, Singapore, South Africa, UK Hauser 2010: 26 countries including US Gill 2009: 13 countries in Africa, Asia, Europe, South America and US	In-hospital, off-label use Relevant to this report: surgical (cardiac), trauma Not relevant: ICH, liver transplant, prostatectomy	
Intervention		Comparator		
rFVIIa		Alternative therapies, placebo	o or usual care	
Three sequential infusions µg/kg)	of rFVIIa (200, 100 and 100			
Population characteristics				
Trauma: Patients with acquired, coagulopathic massive bleeding from body trauma				
Cardiac surgery: Patients who had undergone cardiac surgery and were bleeding.				
Longth of follow-up		Outcomes measured		

Length of follow-up	Outcomes measured
30 days from rFVIIa administration	Mortality*
	Thromboembolic events
	Transfusion volume
	* noted Hauser terminated early due to unexpectedly low mortality and likelihood of being underpowered to meet primary endpoint

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): High

Description: No or one non-critical weakness – the systematic review provides an accurate and comprehensive summary of the results of the available studies that address the question of interest.

Risk of bias of included studies: study quality was assessed using nine predefined criteria.

Trauma: Two RCTs and three Coh studies were all assessed to be of fair quality. Two poor quality Coh studies were excluded.

Cardiac surgery: One good quality RCT (Gill 2009), one fair quality RCT, and four Coh studies (two good quality and two fair quality)

Outcome No. patients (No. trials)	rFVIIa n/N (%)	No rFVIIa n/N (%)	Risk estimate (95% Cl)	Statistical significance p-value
	Mean ± SD	Mean ± SD		Heterogeneity
Trauma				i' (p-value)
Mortality, 30-days N = 277 (2 RCTs)				
Boffard 2005a (blunt)	NR/69 (24.6)	NR/74 (29.7)	NR	p = 0.58
Boffard 2005b (penetrating)	NR/70 (24.3)	NR/64 (28.1)	NR	p = 0.69
Thromboembolic events				

STUDY DETAILS: Yank 2	STUDY DETAILS: Yank 2011				
N = 277 (2 RCTs)					
Boffard 2005a (blunt)	NR/69 (2.9)	NR/74 (4.1)	NR	NR	
Boffard 2005b	NR/70 (5.7)	NR/64 (4.7)	NR	NR	
(penetrating)					
ARDS					
N = 277 (2 RCTs)					
Boffard 2005a (blunt)	NR/69 (4.3)	NR/74 (16.2)	NR	p = 0.03	
Boffard 2005b	NR/70 (5.7)	NR/64 (7.8)	NR	p = 0.74	
(penetrating)					
RBC transfusion, units up					
to 48 hours					
N = 220 (2 RCTs)					
Boffard 2005a (blunt)	6.9 ± 6.2 (52)	10.9 ± 9.3 (59)	NR	p = 0.02	
Boffard 2005b	4.5 ± 5.3 (57)	7.7 ± 9.9 (52)	NR	p = 0.10	
(penetrating)					
hours were excluded					
Cardiac surgery	1				
Mortality				No significant difference	
N = 172 (1 RCT)				Heterogeneity NA	
Gill 2009	10/104	4/68 (5.8)	RD 0.04 (-0.04, 0.12)	NR	
40 ug/kg rFVIIa	4/35 (11.4)				
80ug/kg rFVIIa	6/69 (8.7)				
Thromboembolic events				Favours rFVIIa	
N = 172 (1 RCT)				(borderline)	
Gill 2009	7/104 (6.7)	1/68 (1.5)	RD 0.05 (0.00, 0.11)	NR	
40 ug/kg rFVIIa	3/35 (8.6)				
80ug/kg rFVIIa	4/69 (5.8)				
Total transfusion volume*,				Favours rFVIIa	
mL median (IQR)					
N = 172 (1 RCT)					
Gill 2009	(n = 104)	(n = 68)			
40 ug/kg rFVIIa	640 (0, 1920)	825 (326.5, 1893)	NR	p = 0.047	
80ug/kg rFVIIa	500 (0, 1750)			p = 0.042	
Concercies hills (released	• • 6 4 h • • • • • • • • • • • •	ulation to the Ordele	lines to use to a substant	<u> </u>	

The evidence is directly generalisable to the Australian population with some caveats

Trauma: Included both blunt and penetrating trauma, civilian patients. Despite differences in mechanism of injury, the physiologic characteristics are shared, and are deemed appropriate to assess together. Censoring of patients who experience early in-hospital mortality may affect generalisability.

Cardiac surgery: Population included adult cardiac surgery patients.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats

Trauma: evidence includes a variety of countries and health systems, many of which are similar to Australia. Some differences in regional centres may exist.

Cardiac surgery: evidence includes countries with a health care system similar to Australia.

Additional comments

Authors conclusions

Trauma: low strength evidence suggests the potential for benefit and little evidence of increased harm. Evidence is limited by lack of power for evaluating mortality. Subgroups suggest greater benefit in patients with blunt trauma, higher baseline pH, shorter time to administration, and higher platelet count.

STUDY DETAILS: Yank 2011

Cardiac surgery: moderate strength evidence (TE) and low strength evidence (other outcomes) suggests neither benefit nor harms substantially exceed each other. Subgroups suggest greater benefit with earlier treatment.

List of included studies (patients with critical bleeding)

Trauma: Hauser 2010, Boffard 2005a, Boffard 2005b, Spinella 2008, Rizoli 2006; Fox 2009

Cardiac surgery: Gill 2009, Diprose 2005

Cl, confidence interval; ITT, intention-to-treat; mL, mililitres; RCT, randomised controlled trial; RD, risk difference; SD, standard deviation a. Data derived from figure 2 in Boffard 2005. *P*-values calculated using one-sided Wilcoxon-Mann-Whitney rank test

STUDY DETAILS: Franchini 2010 Citation Franchini, M., Franchi, M., Bergamini, V., Montagnana, M., Salvagno, G. L., Targher, G., & Lippi, G. (2010). The use of recombinant activated FVII in postpartum hemorrhage. Clinical Obstetrics and Gynecology, 53(1), 219-227. doi:http://dx.doi.org/10.1097/GRF.0b013e3181cc4378 Affiliation/Source of funds Details on funding or potential conflicts of interest not provided. University Hospital Parma, Italy Study design Level of evidence Location Setting 1 / IV Systematic review of Italy Obstetrics and observational studies, case gynaecology Registries from various series and registries countries including Europe and Australia No RCTs. case-control. or interventional cohort studies identified (see comments below) Intervention Comparator rFVIIa of varying doses Nil median dose 1.5 µg/kg (range 10–137 µg/kg) number of doses 1.1 (range 1-3) **Population characteristics** Severe postpartum haemorrhage (≥ 500 mL after vaginal delivery and ≥ 1000 mL after caesarean delivery) Mean age 31.3 years, 121 (51.5%) vaginal delivery Reasons for worsening PPH: uterine atony (11/222, 51.3%); uterine or vaginal laceration (62/222, 27.9%); placental abnormalities (50/222, 22.5%); retained placenta (23/222, 10.4%) Length of follow-up **Outcomes measured** Databases searched: EMBASE, Medline Response (defined as cessation or reduction of bleeding) Search date: Citations published between database Morbidity (adverse events) inception and Dec 2008 **INTERNAL VALIDITY Overall QUALITY of the systematic review (descriptive)** Rating (AMSTAR): Moderate Description: More than one non-critical weakness - the systematic review has more than one weakness but no critical flaws. It may provide an accurate summary of the results of the available studies that were included in the review. No reference to protocol or study selection criteria. The included studies are case series only and therefore no comparative data is provided. Risk of bias of included studies: The authors intended to use the Newcastle-Ottawa scale and the Cochrane Risk of Bias tool to assess the methodological quality of the included studies, but no comparative studies were found.

RESULTS:

RESCENS:				
Outcome No. patients (No. trials)	rFVIIa n/N (%) Mean ± SD	no rFVIIa n/N (%) Mean ± SD	Risk estimate (95% CI)	Statistical significance p-value Heterogeneityª l²(p-value)
Response (cessation or significant reduction in bleeding) N = 282 (9 case series)	240/282 (85.1)	-	-	-
Hysterectomy N = 282 (9 case series)	110/225 (43.1)	-	-	-
Adverse events N = 282 (9 case series)	7/282 (2.48) 2 pulmonary embolism 4 venous thromboembolism 1 myocardial infarction	-	-	-

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population with some caveats

Study includes data from the Australian and New Zealand Registry (Isbistar 2008) which collects data on all use of rFVIIa at participating institutions for nonhaemophiliac patients

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian healthcare context with few caveats

Additional comments

Authors conclusions:

The authors identified no RCTs, case-control, or interventional cohort studies, therefore attempted to extract useful information from published case reports (N>10) to provide recommendations for the management of severe PPH. Data from 9 studies involving 272 women were reviewed.

The authors concluded that the use of rFVIIa may provide a beneficial role in the management of PPH refractory to standard treatment.

The recommendations on the management of PPH with rFVIIa are:

- Consider the use of rFVIIa only after the failure of medical (treatment of hemodynamic instability, hypothermia, and metabolic abnormalities; uterine massage/ compression; and uterotonic agents), blood component (transfusion of RBC, platelet, and fresh-frozen plasma to correct anaemia, thrombocytopenia, and coagulopathy), and conservative surgical/invasive (B-Lynch suture, internal iliac or uterine artery ligation, internal uterine tamponade, and uterine artery radiologic embolization) therapies.
- Administer rFVIIa 90 μ g/kg as an intravenous bolus over 3 to 5 minutes.
- Before the rFVIIa injection, check that all abnormal parameters influencing rFVIIa efficacy (ie, acidosis, thrombocytopenia, hypofibrinogenemia, hypothermia, and hypocalcaemia) have been corrected.
- If, 20 minutes after the first dose of rFVIIa, there is no response, administer a second dose of rFVIIa (90 μg/kg), ensuring before that temperature, acidemia, serum calcium, platelets, and fibrinogen have been optimized.
- If bleeding persists after 2 doses of rFVIIa, consider hysterectomy.

List of relevant included studies:

Case series: Ahonen 2005, Segal 2004, Bouma 2008,

Registry data: Alfirevic 2007, Isbister 2008, Sobieszczyk 2006, Barillari 2007

Comparative studies: Ahonen 2007, Hossain 2007 (both included in Module 5)

CI, confidence interval; MA, meta-analysis; NA, not applicable; RCT, randomised controlled trial; SD, standard deviation; SR, systematic review

Randomised controlled trials

STUDY DETAILS: Lavigne-Lissalde 2015

Citation

Lavigne-Lissalde, G., Aya, A. G., Mercier, F. J., Roger-Christoph, S., Chauleur, C., Morau, E., Ducloy-Bouthors, A. S., Mignon, A., Raucoules, M., Bongain, A., Boehlen, F., de Moerloose, P., Bouvet, S., Fabbro-Peray, P., & Gris, J. C. (2015). Recombinant human FVIIa for reducing the need for invasive second-line therapies in severe refractory postpartum hemorrhage: a multicenter, randomized, open controlled trial. J Thromb Haemost, 13(4), 520-529. doi:10.1111/jth.12844 https://clinicaltrials.gov/ct2/show/record/NCT00370877

Affiliation/Source of funds

The study was supported by an Academic Research Clinical Trial grant by the French Ministry of Health (Programme Hospitalier Inter-Regional de Recherche Clinique, PHRC-I/2005/GL)

A. G. Aya reports non-financial support from Novo Nordisk during the conduct of the study. A. Mignon reports lecture fees and grant support from Laboratoire Français Biopharmaceutique and non-financial support from Novo Nordisk during the conduct of the study.

Study design	Level of evidence	Location	Setting
Randomised controlled trial	II	Eight university hospitals in France (7 locations) & Geneva, Switzerland February 2007 - November 2010	Multicentre, obstetrics and maternity
Intervention	·	Comparator	·
60 µg/kg rhuFVIIa (Novoseve	en®) (single iv dose)	Standard of care (SoC)	
(three patients did not receive full dose; one patient received more than recommended dose)		(patients assigned to SoC with very severe PPH received compassionate rhuFVIIa given late in an attempt to avoid emergency peripartum hysterectomy).	

Population characteristics

Women (aged 18 yrs or older) with severe primary PPH, defined as the loss of more than 1500 mL of blood within 24 hr after birth (vaginal or caesarean) that persisted after sulprostone treatment.

First-line therapies for PPH included: fluid resuscitation, bladder catheterization, manual removal of retained placenta, genital tract examination, uterine exploration, oxytocin (20–30 IU every 10–30 min) and one sulprostone infusion (500 µg within 1 hr).

Median age 31 years; 14/84 (16/6%) twin pregnancies; 43/84 (51%) caesarean section delivery; 69/84 (82%) had neuraxial anaesthesia; PPH attributed to uterine atony 75/84 (89%).

The reduction of the need for specific second-line therapies, such as interventional haemostatic procedures, for blood loss and transfusions
Mortality
Thrombotic events (up to 5 days post infusion)
* The contribution of any fluid used for washing was to be taken into account to prevent blood loss overestimation.

INTERNAL VALIDITY

Overall risk of bias (descriptive)

Rating: High

Description: The study has plausible bias that seriously weakens confidence in the results.

Study was not blinded, allowing for compassionate use of rFVIIa in the SoC arm (8/42 received late rFVIIa). It is possible that this introduced bias into the subsequent management of patients (e.g., second line therapies used). Primary outcome of volume of blood loss not available.

STUDY DETAILS: Lavigne-Lissalde 2015					
RESULTS					
Population analysed	Intervention		Comparator	Comparator	
Randomised	42		42		
Efficacy analysis (ITT)	42		42		
Efficacy analysis (PP)	42		42		
Safety analysis	42		42		
Outcome	Intervention	Comparator	Risk estimate	Statistical significance	
	n/N (%)	n/N (%)	(95% CI)	<i>p</i> -value	
	Median (IQR)	Median (IQR)			
rFVIIa versus SoC	1				
Mortality	0/42 (0)	0/42 (0)	Not estimable	Not estimable	
N = 84					
Transfusion volume,	NR/42 (60)	NR/42 (67)	NR	No significant difference	
DDRCc	2 (0, 3)	2 (0, 4)		NR	
N = 84					
Transfusion volume,	NR/42 (45)	NR/42 (48)	NR	No significant difference	
units, median (IQR)	0 (0, 3)	0 (0, 4)		NR	
FFP					
N = 84					
Transfusion volume,	NR/42 (26)	NR/42 (31)	NR	No significant difference	
	NR	NR		NR	
N = 84					
Morbidity	22/42 (52)	39/42 (93)	RR 0.56 (0.42.	Favours rFVIIa	
Reduction in the need			0.76)	p < 0.0001	
for specific second-line					
therapies (composite)					
N = 84					
Morbidity	12/42 (29)	24/42 (57)	RR 0.50 (0.29, 0.86)	Favours rFVIIa	
			0.00)	ρ = 0.0082	
Morbidity	9/42 (21)	12/42 (29)		No significant difference	
Arterial ligation	5/42 (21)	12/42 (23)	RR 0.75 (0.55, 1.59)	n = 0.45	
N = 84				μ - 013	
Morbidity	3/42 (7)	8/42 (19)	RR 0.38 (0.11, 1.32)	No significant difference	
Peripartum	0, 12 (7)	0, 12 (10)		p = 0.11	
hysterectomy				,	
N = 84					
Morbidity	4/42 (10)	6/42 (14)	RR 0.67 (0.20, 2.19)	No significant difference	
Other (B-lynch, Bakri				p = 0.50	
Balloon etc.)					
N = 84					
Safety	2/42 (5)	0/42 (0)		No significant difference	
N - 84				μ - 0.25	
Concretise bility (releven	ce of the study per	ulation to the Cuidal	nes target nonulation	1	
				1	
The evidence is directly generalisable to the Australian population with some caveats					

STUDY DETAILS: Lavigne-Lissalde 2015

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian healthcare context with few caveats

Additional comments

Authors conclusions:

rFVIIa reduced the need for specific second line therapies in about one-third of patients, with the occurrence of nonfatal venous TEs in 1 in 20 patients. In a sub analysis, delivery mode did not affect the primary outcome.

Cl, confidence interval; FFP, fresh frozen plasma; ITT, intent to treat; NA, not applicable; NR, not reported; PC, prothrombin concentrate; PP, per-protocol; PPH, primary postpartum haemorrhage; RBC, red blood cells; RCT, randomised controlled trial; rFVIIa, recombinant factor VIIa; SoC, standard of care

E6 Blood components (Question 6)

Systematic reviews/meta-analyses

STUDY DETAILS: Warmuth 2012

Citation

WARMUTH, M., MAD, P. and WILD, C. (2012), Systematic review of efficacy and safety of fibrinogen substitution in adults. Acta Anaesthesiol Scand, 2012;56: 539-548

Affiliation/Source of funds

Conflicts of interest: The authors declared no conflicts of interest.

Funding: The study was funded by departmental funding only (Ludwig Boltzmann Institute for Health Technology Assessment, Vienna, Austria).

Author affiliations: Ludwig Boltzmann Institute for Health Technology Assessment, Vienna, Austria

Study design	Level of evidence	Location	Setting
SR and MA of RCTs (2) and observational studies (2)	1-111	In total, the studies were published in Denmark (1), Sweden (1) and Germany (2).	Surgical
		Studies related to PICO:	
		Rahe-Meyer 2009a: Germany	
		Rahe-Meyer 2009b: Germany	
Intervention		Comparator	·
Rahe-Meyer 2009a and 2009b: Administration of fibrinogen concentrate prior to standard transfusion algorithm		Rahe-Meyer 2009a and 2009b: Stan algorithm (PC and/or FFP if needed	dard transfusion)
			

Population characteristics

Adult patients undergoing surgery with massive haemorrhage

SR not restricted to trauma.

Assessing FC in perioperative setting and massive haemorrhage. Two studies relevant to this review:

Rahe-Meyer 2009 - thoracoabdominal AA surgery (elective)

Rahe-Meyer 2009a - postoperative AV-AA

Length of follow-up	Outcomes measured
Citations published between 1985 and May 2010.	Total concentrates of RBC, FFP, PC
Databases searched:	Drainage volume
MEDLINE, EMBASE, the Centre for Reviews and	Number of patients with no transfusion
Dissemination (CRD)-York databases [Database of	Safety including 30-day mortality
Abstracts of Reviews of Effects (DARE), National Institute	
for Health Research Economic Evaluation Database (NHS	
EED), Health Technology Assessment (HTA) Database]	
and The Cochrane Library (from inception to 20 May	
2010).	

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Low

Description: One critical flaw with or without non-critical weaknesses – the review has a critical flaw and *may not* provide an accurate and comprehensive summary of the available studies that address the question of interest. Authors did not pool studies in the review and do not comment on why this was not performed.

Risk of bias of included studies: The overall quality of included studies was deemed to be poor. For the RCTs, the reasons were: inadequate method of randomisation; lack of information on allocation concealment; failure to sufficiently report comparability at baseline; no information about blinding of care providers, participants, or outcome assessors; incomplete outcome data; failure to analyse for intention to treat; selective reporting of outcomes and lack of information on determination of study size.

STUDY DETAILS: Warmuth 2012

For the non-RCTs, the reasons for poor quality were: lack of information on allocation of groups; comparison of the intervention group with a historical control group; insufficient information about comparability of groups at baseline and at the analysis stage; questionable association between the reported outcomes and the received intervention (due to substitution of additional blood products such as RBC, FFP and PC); failure to blind care providers, participants and outcomes assessors; and lack of information on the determination of study size or an underpowered study.

Outcome No. patients (No. trials)	[comparator] n/N (%) Mean ± SD	[comparator] n/N (%) Mean ± SD	Risk estimate (95% Cl)	Statistical significance p-value Heterogeneity ^a I²(p-value)
FC versus standard tran	sfusion algorithm	<u>'</u>		
30-day mortality				
n = 33 (2 studies)				
Rahe-Meyer 2009a	0	0	NR	NR
Rahe-Meyer 2009b	0	2/12 (17)	NR	NR
Total concentrates (U)				
n = 33 (2 studies)				Favours FC
Rahe-Meyer 2009a	0.7 ± 1.5 (n = 10)	8.2 ± 2.3 (n = 5)	NR	p < 0.05
Rahe-Meyer 2009b	2.5 ± 4.3 (n = 6)	16.4 ± 4.8 (n = 12)	NR	p < 0.05
RBC transfusion volume (U) in 24 hours				
n = 33 (2 studies)				Favours FC
Rahe-Meyer 2009a	0.5 ± 1.1 (n = 10)	2.4 ± 1.1 (n = 5)	NR	p < 0.05
Rahe-Meyer 2009b	1.0 (n = 6)	4.1 (n = 12)	NR	p < 0.05
FFP transfusion volume (U) in 24 hours				
n = 33 (2 studies)				Favours FC
Rahe-Meyer 2009a	0.2 ± 0.6 (n = 10)	4.2 ± 1.1 (n = 5)	NR	p < 0.05
Rahe-Meyer 2009b	1.0 (n = 6)	9.1 (n = 12)	NR	p < 0.05
PC concentrates (U) in 24 hours				
n = 33 (2 studies)				Favours FC
Rahe-Meyer 2009a	0.0 (n = 10)	$1.6 \pm 0.9 (n = 5)$	NR	p < 0.05
Rahe-Meyer 2009b	0.5 (n = 6)	3.2 (n = 12)		p < 0.05
n = 33 (2 studies)				Favours FC
Rahe-Meyer 2009a	366 ± 199 (n = 10)	716 ± 219 (n = 5)	NR	p < 0.05
Rahe-Meyer 2009b	449 ± 182 (n = 6)	1093 ± 594 (n = 12)	NR	p < 0.05
Number of patients with no transfusion				
n = 18 (1 study)				Favours FC
Rahe-Meyer 2009b	4/6 (67)	0/12	NR	p < 0.05
Re-exploration for bleeding				
n = 33 (2 studies)				
Rahe-Meyer 2009a	0/10	1/5 (20)	NR	NR
Rahe-Meyer 2009b	0/6	4/12 (33)	NR	NR
Major neurological events				
n = 33 (2 studies)				

STUDY DETAILS: Warmuth 2012

STODT DETAILS. War				
Rahe-Meyer 2009a	0/10	0/5	NR	NR
Rahe-Meyer 2009b	0/6	2/12 (17)	NR	NR
Renal failure				
n = 18 (1 study)				
Rahe-Meyer 2009b	0	2/12 (17)	NR	NR
Post-operative atrial fibrillation				
n = 33 (2 studies)				
Rahe-Meyer 2009a	1/10 (10)	1/5 (20)	NR	NR
Rahe-Meyer 2009b	0	1/12 (8)	NR	NR

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population. Includes studies with surgical patients with massive haemorrhage.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian healthcare context. The studies were conducted in developed European countries.

Additional comments

Author's conclusions:

In conclusion, evidence from four poor quality, controlled trials suggests that the administration of fibrinogen concentrate improved clot firmness, decreased the need for other blood products and significantly reduced post-operative bleeding and drainage volume. In addition, it appeared to be safe.

List of relevant included studies:

Rahe-Meyer 2009a, Rahe-Meyer 2009b

Cl, confidence interval; FC, fibrinogen concentrate; FFP, fresh frozen plasma; NR, not reported; PC, platelet concentrate; PICO, population intervention comparator intervention; RBC, red blood cells; RCT, randomised controlled trial; SD, standard deviation; U, units.

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Aubron 2014

Citation

Aubron C, Reade M, C, Fraser J.F et al. Efficacy and safety of fibrinogen concentrate in trauma patients – a systematic review. Journal of Critical Care. 2014, 29: 471.e11-471.e17

Affiliation/Source of funds

Conflicts of interest: The authors declared no conflicts of interest.

Funding: The study is part of a research program funded by the NHMRC.

Author affiliations: AC and DJC affiliated with ANZIC Research Center, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia.

MCR affiliated with Australian Defence Force and Burns, Trauma and Critical Care Research Center, University of Queensland, Brisbane, QLD 4029, Australia. JFF affiliated with Critical Care Research Group, University of Queensland, Brisbane, QLD 4029, Australia.

DJC was supported by an NHMRC Practitioner Fellowship. MCR is a serving officer in the Australian Defence Force. JF Fraser is supported by a Queensland Health Research Scholarship.

Study design	Level of evidence	Location	Setting
SR of 4 case reports and 7 retrospective studies (no meta-analysis). Only 1 study was a prospective observational study (Weiss 2011).	111-IV	Not reported	Trauma
Intervention		Comparator	
Schochl 2011: 6 g FC (median)		Schochl 2011: FFP	

STUDY DETAILS: Aubron 2014				
Nienaber 2011: 4 g FC (median)	Nienaber 2011: FFP			
Wafaisade 2013: FC (dosage not reported)	Wafaisade 2013: no FC			
Innerhofer 2013: 25-50 mg/kg FC	Innerhofer 2013: FC + FFP			
Deputation observatoriation				

Population characteristics

Schochl 2011: ISS \geq 16 and BE 2mmol/L or less. Abbreviated Injury Scale (AIS) of the abdomen, thorax, extremities \geq 3. Nienaber 2011: ISS \geq 16 and BE 2mmol/L or less upon ED admission and AIS of the abdomen, thorax, extremities \geq 3. Wafaisade 2013: Trauma + ISS \geq 16 at least 1 RBC + Trauma Associated Severe Haemorrhage (TASH) score \geq 9. Innerhofer 2013: Trauma + ISS \geq 15, multiple blunt injury, survival for at least 24 hours and need for haemostatic agents.

Length of follow-up	Outcomes measured	
Databases searched: MEDLINE, Cochrane Library	Hospital mortality	
(Citations published between Jan 2000 and April 2013).		

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Critically low

Description: More than one critical flaw with or without non-critical weaknesses – the review has more than one critical flaw and should not be relied on to provide an accurate and comprehensive summary of the available studies.

Risk of bias of included studies: There was no formal method for assessing risk of bias of included studies. The authors describe the limitation of the available literature - most studies are retrospective with small sample sizes, have a high degree of heterogeneity of the comparator, and heterogeneity in the measures of effect, the included studies lack rigorous analyses.

Outcome	Fibrinogen	No fibrinogen	Risk estimate	Statistical significance
No. patients	n/N (%)	n/N (%)	(95% CI)	<i>p</i> -value
(No. trials)	Mean ± SD	Mean ± SD		Heterogeneity ^a
				l² (p-value)
FC versus FFP				
Mortality, in-hospital				
overall				
N = 681 (2 studies)				No significance difference
Schochl 2011	6/80 (7.5)	10/601 (10)	NR	p = 0.69
Nienaber 2011	3/18 (16.7)	2/18 (11.1)	NR	p = 0.50
Multi-organ failure				
N = 36 (1 study)				Favours FC
Nienaber 2011	3/18 (16.7)	11/18 (61)	NR	p = 0.015
RBC transfusion				
volume, units in first 6				
hrs				Favours FC
N = 36 (1 study)	1 (NR) (n = 18)	7.5 (NR) (n = 18)	NR	p < 0.005
Nienaber 2011				
RBC transfusion	median (IQR)	median (IQR)		
volume, units in first 24				
hrs,				Favours FC
N = 36 (1 study)	3 (0, 5) (n = 18)	12.5 (8, 20) (n = 18)	NR	p < 0.005
Nienaber 2011				
RBC transfusion				
volume, units, in first 48				
hrs				
N = 681 (1 study)	2 (NR) (n = 80)	3 (NR) (n = 601)	NR	NR
Schochl 2011				
RBC transfusions				
volumes, units, overall				
N = 681 (1 study)				Favours FC

STUDY DETAILS: Aub	on 2014			
Schochl 2011	57/80 (71)	583/601 (97)	NR	p < 0.001
Number of patients requiring platelets N = 717 (2 studies) Schochl 2011 Nienaber 2011	7/80 (9)	264/601 (44)	NR	Favours FC p < 0.001
	0/18	2/18 (11)	NR	<i>p</i> < 0.005
N = 681 (1 study) Schochl 2011	1 or 2 (n = 80)	NR (n = 601)	NR	NR
FFP transfusion volume, units, overall N = 681 (1 study) Schochl 2011	NA (n = 80)	3 (n = 601)	NR	NR
FFP transfusion volume.				
units to 6 hours N = 36 (1 study)	0 (n = 10)	$C_{1}(n = 10)$		
	0 (n = 18)	6 (n = 18)	NR	NA
units to 24 hours N = 36 (1 study)				
Nienaber 2011	0 (n = 18)	10 (n = 18)	NR	NA
PLT transfusion volume, units to 24 hrs N = 36 (1 study)	0 (p - 18)	2 (n - 19)	ND	n < 0.005
	0 (11 – 18)	2 (11 – 10)	INR	ρ< 0.005
units to 6 hrs N = 36 (1 study)				
Nienaber 2011	4 (n = 18)	0 (n = 18)	NR	NA
FC transfusion volume, units to 24 hours N = 36 (1 study)				
Nienaber 2011	4 (n = 18)	0 (n = 18)	NR	p < 0.005
FC transfusion volume, units, overall N = 681 (1 study) Schochl 2011	6 (n = 80)	NR (n = 601)	NR	NR
PCC transfusion volume, units to 6 hours N = 36 (1 study) Nienaber 2011	1200 (n = 18)	0 (n = 18)	ND	NA
PCC transfusion volume, units to 24 hours N = 36 (1 study)	1200 (n = 18)	0 (n = 18)	NR	NR
In-patient days N = 717 (2 studies) Schochl 2011 Nienaber 2011	23 (n = 80) 26 (n = 18)	32 (n = 601) 38 (n = 18)	NR	р = 0.005 р = 0.481
<u> </u>				1

STUDY DETAILS: Aub	ron 2014			
ICU days				
N = 717 (2 studies)				No significant difference
Schochi 2011	14.5 (n = 80)	14(n = 601)	ND	p = 0.95
	19 (n = 18)	16 (n = 18)		p = 0.628
C hour mortality				
6-nour mortality $N = 588 (1 \text{ study})$				
Wafaisada 2013	31/29/ (10 5)	19/29/ (167)	ND	ravours rc
24-bour mortality	51/254 (10.5)	+5/25+ (10.7)		p = 0.05
N = 588 (1 study)				No significant difference
Wafaisade 2013	41/294 (13.9)	54/294 (18.4)	NR	p = 0.15
Mortality 30 days	.,,23 . (.0.5)			
N = 588 (1 study)				No significant difference
Wafaisade 2013	82/294 (27.9)	73/294 (24.8)	NR	p = 0.40
Mortality, in-hospital				
overall				
N = 588 (1 study)				No significant difference
Wafaisade 2013	84/294 (28.6)	75/294 (25.5)	NR	p = 0.40
Thromboembolic				
events				No significant difference
N = 588 (1 study)	20/294 (6.8)	10/294 (3.4)	NR	p = 0.06
Wafaisade 2013				
Multi-organ failure				
N = 588 (I study)	100/2011/0120			Favours FC
	180/294 (61.2)	144/294 (49)		ρ = 0.005
N = 588 (1 study)				Equours EC
Wafaisade 2013	0 (n = 294)	2 (1-3) (n = 294)	NR	p < 0.005
RBC transfusion volume				
(units)				
N = 588 (1 study)				No significant difference
Wafaisade 2013	12.8 ± 14.3 (n = 294)	11.3 ± 10.0 (n = 294)	NR	p = 0.20
FFP transfusion volume				
(units)				
N = 588 (1 study)				No significant difference
Wafaisade 2013	10.6 ± 11.4 (n = 294)	8.7 ± 8.2 (n = 294)	NR	p = 0.07
In-patient days				
N = 588 (1 study)				No significant difference
Wafaisade 2013	34.6 ± 33.3 (n = 294)	32.8 ± 28.4 (n = 294)	NR	<i>p</i> = 0.68
ICU days				
N = 588 (1 study)				No significant difference
Wataisade 2013	17.2 ± 17.6 (n = 294)	17.3 ± 17.9 (n = 294)	NR	р = 0.96
ru versus ru I FFP			ND	
Mortality 50 days $N = 144(1 \text{ study})$	(0.1) 00/2	0//8 (/./.)		no significant difference
Innerhofer 2013				ο- ο,
Thromboembolism	6/66 (10%)	6/78 (77)	NP	No significant difference
N = 144 (1 study)		5,70 (7.7)		p = 0.772
Innerhofer 2013				,
I	1	1	1	1

STUDY DETAILS: Aubron 2014 (n = 66) (n = 78) NR Favours FC ± PCC Red blood cell transfusion volume, 2 (0-6) 7 (4-11) p < 0.001units N = 144 (1 study) Innerhofer 2013 Platelet transfusion (n = 66) (n = 78) NR Favours FC ± PCC volume. units 0 1 (0-2) p < 0.001 N = 144 (1 study) Innerhofer 2013 In-patient days (n = 78) (n = 78) NR No significant difference p = 0.074N = 144 (1 study) 29 24 Innerhofer 2013 ICU days (n = 78) (n = 66) NR No significant difference N = 144 (1 study)14 12 p = 0.217Innerhofer 2013

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is not directly generalisable to the Australian population and it is hard to judge whether it is sensible to apply. Weiss 2011, the only prospective observational study, included 28% trauma patients. It wasn't clear whether the non-patients had critical bleeding.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian healthcare context. Weiss 2011 reported data from patients in German and Austrian hospitals, which are likely to be relevant to the Australian health system.

Additional comments

Authors conclusions:

The authors conclude that despite methodological flaws, some of the available studies suggested that FC administration may be associated with a reduced blood product requirement. Randomised trials are warranted to determine whether FC improves outcomes in pre-hospital management of trauma patients or whether FC is superior to another source of fibrinogen in early hospital management of trauma patients.

List of relevant included studies:

Schochl 2011, Nienaber 2011, Wafaisade 2013, Innerhofer 2013

AIS, abbreviated injury score; BE, base excess; CI, confidence interval; ED, emergency department; FC, fibrinogen concentrate; FFP, fresh frozen plasma; ISS, injury severity score; NR, not reported; PCC, prothrombin complex concentrate; RBC, red blood cells; SD, standard deviation.

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Lunde 2014						
Citation						
LUNDE, J., STENSBALLE, J., WIKKELSØ, A., JOHANSEN, M. and AFSHARI, A. (2014), Fibrinogen concentrate for bleeding-a systematic review. Acta Anaesthesiol Scand, 58: 1061-1074. doi:10.1111/aas.12370						
Affiliation/Source of funds	5					
Conflicts of interest: The au	thors declared no conflicts	of interest.				
Funding: The authors decla	ared no funding for this revi	ew				
Author affiliations: Copenh	agen University Hospital, He	erlev Hospital, University of (Copenhagen			
Study design	Level of evidence	Location	Setting			
SR and MA of RCTs (7) I-III Not reported Obstetrics, trauma, surgery (23) (23) Initial Studies Initial Studies						
Intervention Comparator						
Non-RCT: Non-RCT:						
Ahmed 2012: 4 g FC (mean)	Ahmed 2012: CRYO				

STUDY DETAILS: Lunde 2014			
Bilicen 2013: 2 g FC (median)	Bilicen 2013: non-FC treatment		
Innerhofer 2013: 57 mg/kg FC (median)	Innerhofer 2013: FC + FFP		
Nienaber 2011: 4 g FC (median)	Nienaber 2011: FFP treatment		
Rahe-Meyer 2009: 7.8 g FC (mean)	Rahe-Meyer 2009: FFP + PLT treatment		
Wafaisade 2013: FC (dosage not stated)	Wafaisade 2013: non-FC treatment		
Population characteristics			
Patients with bleeding requiring fibrinogen concentrate, in	dications including:		
Ahmed 2012: Postpartum haemorrhage			
Bilicen 2013: Surgery			
Innerhofer 2013: Trauma			
Nienaber 2011: Trauma			
Rahe-Meyer 2009: Cardiac surgery			
Wafaisade 2013: Trauma			
Length of follow-up	Outcomes measured		
Databases searched:	RCT:		
CENTRAL, MEDLINE, Internation Web of Science, CINAHL, LILACS (from inception to 9 August 2013) and Chinese Biomedical Literature Database (from inception to 10	Haemostatic conditions, e.g., achievement of haemostasis or coagulation parameters from either standard laboratory tests or ROTEM		
November 2013).Transfusion of allogeneic blood products or (thromboembolic events)			
	Non-RCTs:		
	Reduction of bleeding		
	Transfusion requirements		
	Mortality		
INTERNAL VALIDITY	·		

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Critically low

Description: More than one critical flaw with or without non-critical weaknesses – the review has more than one critical flaw and *should not be relied on* to provide an accurate and comprehensive summary of the available studies. *Risk of bias of included studies:* The overall risk of bias for included RCTs was judged by the review authors to be high. There were concerns with small sample size, inadequate follow-up, missing intention to treat, lack of proper blinding and design based surrogate outcomes with high risk of bias. One study was only published as an abstract. Several studies used FC in conjunction with other pro-haemostatic factors. Six out of the seven RCTs were partially or fully funded by medical industry.

RESULTS:						
Outcome No. patients (No. trials)	[intervention] n/N (%) Mean ± SD	[comparator] n/N (%) Mean ± SD	Risk estimate (95% CI)	Statistical significance p-value Heterogeneitya I ² (p-value)		
FC versus FC ± FFP						
Mortality, 30 days n = 144 (1 study) Innerhofer 2013	5/66 (7.6)	6/78 (7.7)	NR	No significant difference p = 0.979		
Multi-organ failure n = 144 (1 study) Innerhofer 2013	12/66 (18.2)	29/78 (37.2)	NR	Favours FC p = 0.015		
Sepsis N = 144 (1 study) Innerhofer 2013	11/66 (16.7)	28/78 (35.9)	NR	Favours FC p = 0.014		
Patients requiring blood transfusion	40/66 (60.6)	76/78 (97.4)	NR	Favours FC p < 0.001		

STUDY DETAILS: Lunde	2014			
N = 144 (1 study)				
Innerhofer 2013				
RBC transfusion volume, units to 24 hrs	Median (IQR)	Median (IQR)	NR	No significant difference p = 0.001
N = 144 (1 study)				
Innerhofer 2013	2 (0, 6) (n = 66)	7 (4, 11) (n = 78)		
PLT transfusion volume, units to 24 hrs	Median (IQR)	Median (IQR)	NR	NR
N = 144 (1 study)				
Innerhofer 2013	0 (0, 0) (n = 66)	8 (5, 10) (n = 78)		
FC transfusion volume, units to 24 hrs	Median (IQR)	Median (IQR)	NR	No significant difference $p = 0.550$
N = 144 (1 study)				
Innerhofer 2013	4 (2, 4) (n = 66)	4 (2, 6) (n = 78)		
PCC transfusion volume, units to 24 hrs	Median (IQR)	Median (IQR)	NR	No significant difference p = 0.001
N = 144 (1 study)		0(0.1200)(n - 79)		
Innerhofer 2013	0 (0, 1200) (n = 66)	0 (0, 1200) (11 – 78)		
RBC transfusion volume, units to 24 hrs	Median (IQR)	Median (IQR)	NR	No significant difference <i>p</i> = 0.001
N = 144 (1 study)				
Innerhofer 2013	7 (4, 11) (n = 66)	2 (0, 6) (n = 78)		
FFP transfusion volume, units to 24 hrs	Median (IQR)	Median (IQR)	NR	NR
n = 144 (1 study)				
Innerhofer 2013	0 (0, 0) (n = 66)	8 (5, 10) (n = 78)		
In-patient days			NR	No significant difference
n = 144 (1 study)	(n = 66)	(n = 78)		p = 0.074
Innerhofer 2013	29	24		
ICU days			NR	No significant difference
n = 144 (1 study)	(n = 66)	(n = 78)		p = 0.217
Innerhofer 2013	12	14		
FC versus FFP	1	1		
Mortality, overall, in- hospital	3/18 (16.7)	2/18 (11.1)	NR	No significant difference $p = 0.500$
n = 36 (1 study)				
Nienaber 2011				
Multi-organ failure	3/18 (16.7)	11/18 (61.1)	NR	Favours FC
n = 36 (1 study)				p = 0.015
Nienaber 2011				
Red blood cell (units)	(n = 18)	(n = 18)	NR	Favours FC
transfusion volume	3	12.5		p < 0.005
n = 36 (1 study)				
Nienaber 2011				
In-patient days	(n = 18)	(n = 18)	NR	No significant difference
n = 36 (1 study)	26	38		p = 0.481
Nienaber 2011				
ICU days	(n = 18)	(n = 18)	NR	No significant difference
n = 36 (1 study)	19	1		p = 0.628
Nienaber 2011				

STUDY DETAILS: Lunde	2014				
FC versus FFP + PLT					
Mortality, 30-day	0/6	2/12 (17)	NR	NR	
n = 18 (1 study)					
Rahe-Meyer 2009					
Re-exploration for	0/6	4/12 (33)	NR	NR	
bleeding					
n = 18 (1 study)					
Rahe-Meyer 2009					
Postoperative atrial fibrillation	0/6	1/12 (8)	NR	NR	
n = 18 (1 study)					
Rahe-Meyer 2009					
Renal failure	0/6	2/12 (17)	NR	NR	
n = 18 (1 study)					
Rahe-Meyer 2009					
Major neurologic events	0/6	2/12 (17)	NR	NR	
n = 18 (I study)					
Rahe-Meyer 2009	(
Blood transfusion volume	(n = 6)	(n = 12)	NR	NR	
n = 18 (1 study)	2.5	16.4			
Rahe-Meyer 2009					
DBC transfusion volume	(n = 6)	(n = 12)	ND	ND	
units to 24 hours	10	(11 – 12) 41			
n = 18 (1 study)	1.0	1.1			
Rahe-Meyer 2009					
RBC transfusion volume,	(n = 6)	(n = 12)	NR	NR	
mL to 24 hours	449.2	1092.5			
N = 18 (1 study)					
Rahe-Meyer 2009					
FFP transfusion volume,	(n = 6)	(n = 12)	NR	Favours FC	
units to 24 hours	1.0	9.1		p < 0.05	
N = 18 (1 study)					
Rahe-Meyer 2009					
PLT transfusion volume,	(n = 6)	(n = 12)	NR	Favours FC	
N = 18 (1 study)	0.5	3.2		p < 0.05	
Daha-Mayar 2009					
	(n - 6)	(n = 12)	ND	Equours EC	
N = 18 (1 study)	37 + 18 9	1154 + 602		n < 0.05	
Rahe-Meyer 2009		110.1 2 00.2			
FC versus non-FC treatment					
Mortality (6-hour)	31/294 (10.5)	49/294 (16.7)	NR	NR	
N = 588 (1 study)		,,			
Wafaisade 2013					
Mortality (24 h)	NR/294	NR/294	NR	No significant difference	
N = 588 (1 study)				NR	
Wafaisade 2013					
Mortality (30 day)	NR/294	NR/294	NR	No significant difference	
N = 588 (1 study)				NR	
Wafaisade 2013					

STUDY DETAILS: Lunde	2014			
Mortality, 30 day N = 1075 (1 study) Bilecen 2013	18/264 (7)	33/811 (4)	0.96 (0.48, 1.92)	NR
Multi-organ failure N = 588 (1 study) Wafaisade 2013	180/294 (61.2)	144/294 (49)	NR	Favours FC ρ = 0.003
Myocardial infarction N = 1075 (1 study) Bilecen 2013	14/264 (5)	30/811 (4)	1.10 (0.53, 2.27)	No significant difference ρ = 0.07
Cerebrovascular accident/ transient ischemic attack N = 1075 (1 study) Bilecen 2013	11/264 (5)	30/811 (4)	1.16 (0.50, 2.72)	No significant difference p = 0.15
Renal insufficiency/ failure N = 1075 (1 study) Bilecen 2013	13/264 (5)	38/811 (5)	0.62 (0.29, 1.32)	No significant difference p = 0.87
Total infections N = 1075 (1 study) Bilecen 2013	29/264 (11)	74/811 (9)	1.18 (0.72, 1.95)	No significant difference p = 0.37
Red blood cell (units) transfusion volume N = 588 (1 study) Wafaisade 2013	(n = 294) 12.8 ± 14.3	(n = 294) 11.3 ± 10.0	NR	No significant difference p = 0.20
FFP (units) transfusion volume N = 588 (1 study) Wafaisade 2013	(n = 294) 10.6 ± 11.4	(n = 294) 8.7 ± 8.2	NR	No significant difference ρ = 0.07
In-patient days N = 588 (1 study) Wafaisade 2013	(n = 294) 34.6 ± 33.3	(n = 294) 32.8 ± 28.4	NR	No significant difference p = 0.96
ICU days N = 588 (1 study) Wafaisade 2013	(n = 294) 17.2 ± 17.6	(n = 294) 17.3 ± 17.9	NR	No significant difference p = 0.68
FC versus CRYO				1
RBC transfusion volume (units) N = 34 (1 study) Ahmed 2012	(n = 20) 5.90 (0.96)	(n = 14) 7.21 (1.23)	NR	No significant difference p = 0.40
FFP transfusion volume (units) N = 34 (1 study) Ahmed 2012	mean (SEM) 3.15 (0.65) (n = 20)	mean (SEM) 4.07 (0.74) (n = 14)	NR	No significant difference p = 0.36
PLT transfusion volume (units) n = 34 (1 study) Abmed 2012	mean (SEM)	mean (SEM)	NR	No significant difference p = 0.99
FC transfusion volume	mean (SEM)	mean (SEM)	NP	No significant difference
(units) n = 34 (1 study)	3.34 (0.22) (n = 20)	3.05 (0.19) (n = 14)		p = 0.35

STUDY DETAILS: Lunde 2014

mean (SEM)	mean (SEM)	NR	No significant difference
			p = 0.19
6.55 (0.81) (n = 20)	5.21 (0.33) (n = 14)		
mean (SEM)	mean (SEM)	NR	No significant difference
			p = 0.95
33.6 (5.44) (n = 20)	34.1 (4.32) (n = 14)		
	mean (SEM) 6.55 (0.81) (n = 20) mean (SEM) 33.6 (5.44) (n = 20)	mean (SEM) mean (SEM) 6.55 (0.81) (n = 20) 5.21 (0.33) (n = 14) mean (SEM) mean (SEM) 33.6 (5.44) (n = 20) 34.1 (4.32) (n = 14)	Imean (SEM) mean (SEM) NR 6.55 (0.81) (n = 20) 5.21 (0.33) (n = 14) NR mean (SEM) mean (SEM) NR 33.6 (5.44) (n = 20) 34.1 (4.32) (n = 14) NR

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population. Included studies contain bleeding patients due to post-partum haemorrhage, cardiac and non-cardiac surgy and trauma.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian healthcare context with few caveats. Study locations for the included studies are not reported.

Additional comments

Author's conclusions:

Weak evidence from RCTs supports the use of fibrinogen concentrate in bleeding patients, primarily in elective cardiac surgery. However, a general use of fibrinogen across all settings is only supported by non-RCTs with serious methodological shortcomings.

List of relevant included studies:

Ahmed 2012, Bilicen 2013, Innerhofer 2013, Nienaber 2011, Rahe-Meyer 2009, Wafaisade 2013

Cl, confidence interval; FC, fibrinogen concentrate; FFP, fresh frozen plasma; NR, not reported; PLT, platelets; RCT, randomised controlled trial; ROTEM, rotational thromboelastometry; SD, standard deviation; SEM, standard error of mean;

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Mengoli 2017

Citation

Mengoli, C., Franchini, M., Marano, G., Pupella, S., Vaglio, S., Marietta, M., & Liumbruno, G. M. (2017). The use of fibrinogen concentrate for the management of trauma-related bleeding: a systematic review and meta-analysis. Blood transfusion = Transfus 2017, 15(4), 318–324. doi:10.2450/2017.0094-17

Affiliation/Source of funds

Conflicts of interest: The authors declared no conflicts of interest except for GML, who is the Editor-in-Chief of Blood Transfusion and this manuscript had undergone additional review as a result.

Funding: Details on funding not provided.

Author affiliations: CM, MF, GM, SP, SV and SML affiliated with Italian National Blood Centre, National Institute of Health, Rome. MF affiliated with Department of Haematology and Transfusion Medicine, "Carlo Poma" Hospital, Mantua. SV affiliated with Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, Rome. MM affiliated with Department of Oncology, Haematology and Respiratory Diseases, University Hospital, Modena, Italy.

Study design	Level of evidence	Location	Setting	
Systematic review and meta-analysis of prospective (1) and retrospective (6) studies	1-111	Not reported	Trauma	
Intervention		Comparator		
Schochl 2011: 6 g FC (median)		Schochl 2011: FFP		
Nienaber 2011: 4 g FC (median)		Nienaber 2011: FFP		
Innerhofer 2013: 2g FC, 4g FC + FFP		Innerhofer 2013: FC+FFP		
Wafaisade 2013: FC (dose not reported)		Wafaisade 2013: no FC		
Population characteristics				
Patients with trauma-related bleeding (severe trauma)				

STUDY DETAILS: Mengoli 2017				
Length of follow-up	Outcomes measured			
Databases searched:	Mortality (overall in-hospital, 6 hours, 24 hours, 72 hours)			
MEDLINE, EMBASE and SCOPUS (from Jan 2000 to Feb 2017).	Transfusion requirements (RBC, platelets) Laboratory coagulation parameters Clinical outcomes (sepsis, multi-organ failure, days of			
	ventilation, duration of hospitalisation, thromboembolic events)			

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Low

Description: One critical flaw with or without non-critical weaknesses – the review has a critical flaw and *may not* provide an accurate and comprehensive summary of the available studies that address the question of interest.

Results were pooled if outcome reported in at least three studies.

Risk of bias of included studies: The quality of evidence of the seven studies evaluated was poor, according to GRADE criteria. All studies were retrospective, except Weiss 2011. All were cohort studies, in which the treatment allocation was an observed (post-hoc) exposure, instead of a randomised controlled trial or quasi-experimental studies with predetermined eligibility criteria and prior allocation. No study was randomised.

Outcome No. patients (No. trials)	[intervention] n/N (%) Mean ± SD	[comparator] n/N (%) Mean ± SD	Risk estimate (95% CI)	Statistical significance p-value Heterogeneitya I2 (p-value)
FC versus FFP		·	·	·
Mortality, overall, in- hospital N = 717 (2 studies) Schochl 2011 Nienaber 2011	NR/80 NR/18	NR/601 NR/18	RR 0.75 (0.34, 1.68) RR 1.50 (0.28, 7.93)	NR NR
MOF N = 36 (1 study) Schochl 2011	3/18 (16.7)	11/18 (61)	NR	Favours FC p = 0.015
Sepsis N = 36 (1 study) Schochl 2011	3/18 (16.7)	6/18 (33.3)	NR	No significant difference p = 0.443
Number of patients requiring RBC units N = 681 (1 study) Schochl 2011	57/80 (71%)	583/601 (97%)	NR	Favours FC p < 0.001
Number of patients requiring platelets N = 681 (1 study) Schochl 2011	7/80 (9%)	264/601 (44%)	NR	Favours FC p < 0.001
Red blood cell (units) transfusion volume N = 36 (1 study) Nienaber 2011	(n = 18) 3	(n = 18) 12.5	NR	Favours FC ρ < 0.005
In-patient days N = 717 (2 studies) Schochl 2011 Niapabor 2011	Median (IQR) (n = 98) 23 (14.5, 40.5) 26 (19.50)	Median (IQR) (n = 619) 32 (20, 49) 38 (21, 48)	NR	p = 0.005, Favours FC

STUDY DETAILS: Mengoli 2017 Median (IQR) NR ICU days Median (IQR) (n = 619) (n = 98) N = 717 (2 studies) No significant difference 14.5 (8.5, 21) 14 (6, 23) Schochl 2011 p = 0.9519 (9, 33) 16 (13, 25) Nienaber 2011 p = 0.628 FC versus no FC Mortality, overall, in-NR/294 NR/294 RR 1.12 (0.86, 1.46) NR hospital N = 588 (1 study) Wafaisade 2013 Mortality, 6-hour 31/294 (10.5%) 49/294 (16.7%) NR Favours FC N = 588 (1 study) p = 0.03Wafaisade 2013 Multiple organ failure 180/294 (61.2%) 144/294 (49%) NR Favours FC N = 588 (1 study) p = 0.003Wafaisade 2013 Thromboembolic 20/294 (6.8%) 10/294 (3.4%) NR No significant difference events p = 0.06N = 588 (1 study) Wafaisade 2013 RBC transfusion (n = 294) (n = 294) NR No significant difference volume, units 12.8 ± 14.3 11.3 ± 10.0 p = 0.20N = 588 (1 study) Wafaisade 2013 FFP transfusion (n = 294) (n = 294) NR No significant difference volume, units 10.6 ± 11.4 8.7 ± 8.2 p = 0.07N = 588 (1 study) Wafaisade 2013 NR In-patient days (n = 294) (n = 294) No significant difference N = 588 (1 study) 34.6 ± 33.3 32.8 ± 28.4 p = 0.96Wafaisade 2013 (n = 294) NR No significant difference ICU days (n = 294) N = 588 (1 study) 17.2 ± 17.6 17.3 ± 17.9 p = 0.68Wafaisade 2013 FC versus FC ± FFP NR Mortality, 30 days 5/66 (7.6) 6/78 (7.7) No significant difference N = 144 (1 study) p = 0.979Innerhofer 2013 Thromboembolism NR No significant difference 6/66 (10) 6/78 (7.7) N = 144 (1 study) p = 0.772 Innerhofer 2013 11/66 (16.7) 28/78 (35.9) NR No significant difference Sepsis N = 144 (1 study) p = 0.014Innerhofer 2013 MOF No significant difference 12/66 (18.2) 29/78 (37.2) NR N = 144 (1 study) p = 0.015Innerhofer 2013 NR **RBC** transfusion Favours FC ± PCC Median (IQR) Median (IQR) volume, units to 24 p < 0.001 hrs

STUDY DETAILS: Mengoli 2017

STODT DETAILS. Me				
N = 144 (1 study) Innerhofer 2013	2 (0, 6) (n = 66)	7 (4, 11) (n = 78)		
Platelet transfusion volume, units to 24 hrs N = 144 (1 study) Innerhofer 2013	Median (IQR) 0 (0, 0) (n = 66)	Median (IQR) 0 (0, 1) (n = 78)	NR	Favours FC ± PCC ρ = 0.003
In-patient days N = 144 (1 study) Innerhofer 2013	Median (IQR) 24 (12, 35) (n = 66)	Median (IQR) 29 (16, 50) (n = 78)	NR	No significant difference p = 0.074
ICU days N = 144 (1 study) Innerhofer 2013	Median (IQR) 12 (6, 24) (n = 66)	Median (IQR) 14 (7, 30) (n = 78)	NR	No significant difference p = 0.217

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population. Studies included patients with trauma-related bleeding. However, it is not clear what proportion of patients in all the included trials were trauma patients as Weiss 2011 had only 28% trauma patients.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats. The setting for the included trials are not provided.

Additional comments

Authors conclusions:

Although the meta-analytic pooling of the current literature evidence suggests no beneficial effect of fibrinogen concentrate in the setting of severe trauma, the quality of data retrieved was poor and the final results of ongoing randomised trials will help to further elucidate the role of fibrinogen concentrate in traumatic bleeding.

List of relevant included studies:

Schochl 2011, Nienaber 2011, Innerhofer 2013, Wafaisade 2013

Cl, confidence interval; FC, fibrinogen concentrate; FFP, fresh frozen plasma; NR, not reported; PCC, prothrombin complex concentrate; RBC, red blood cells; RR, relative risk; SD, standard deviation.

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Fabes 2018

Citation

Fabes 2018

Fabes J, Brunskill SJ, Curry N, Doree C, Stanworth SJ. Pro-coagulant haemostatic factors for the prevention and treatment of bleeding in people without haemophilia. Cochrane Database of Systematic Reviews 2018, Issue 12. Art. No.: CD010649. DOI: 10.1002/14651858.CD010649.pub2.

Affiliation/Source of funds

Conflicts of interest: The authors did not address potential conflicts of interest. The views and the opinions expressed are those of the authors and do not necessarily reflect those of the Systematic Reviews Programme, NIHR, NHS or the Department of Health.

Funding: This project was supported by the UK National Institute for Health Research, through Cochrane Infrastructure funding to the Cochrane Injuries Group.

Author affiliations: JF affiliated with John Radcliffe Hospital, Oxford, UK. SJB and CD affiliated with Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK. NC affiliated with Oxford Haemophilia & Thrombosis Centre, Churchill Hospital, Oxford, UK. SJS affiliated with National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust and University of Oxford, Oxford, UK.

STUDY DETAILS: Fabes 2	018			
Study design	Level of evidence	Location	Setting	
SR and MA of 31 randomised controlled trials (from 61 references)	1	Three trials were multicentre, multinational and six were multicentre based in a single country (Germany, Spain, UK, Sweden, Denmark)	In total, 22 trials were in an elective surgical setting. 5 trials in an urgent medical setting. 4 trials in a non- urgent medical setting	
		22 trials were single centre in Iran (4), Germany (3), Switzerland (3), Netherlands (2), Brazil (1), Austria (1), Canada (1), China (1), Denmark (1), Great Britain (1), Italy (1), Japan (1), Sweden (1), USA (1).	Studies relevant to PICO: Bilicen 2017: Cardiac surgery Collins 2017: Obstetrics Curry 2018: Trauma Jeppsson 2016: Cardiac surgery Nascimento 2016: Trauma	
		Studies relevant to PICO: Bilicen 2017: Netherlands Collins 2017: UK Curry 2018: UK Jeppsson 2016: Sweden Nascimento 2016: Canada Rahe-Meyer 2013: Germany Rahe-Meyer 2016: Germany Wikkelso 2015: Denmark Galas 2014: Brazil Innerhofer 2017: Austria Lance 2012: Netherlands Tanaka 2014: USA	Rahe-Meyer 2013: Cardiac surgery Rahe-Meyer 2016: Cardiac surgery Wikkelso 2015: Obstetrics Galas 2014: Paediatric cardiac surgery Innerhofer 2017: Trauma Lance 2012: Surgery Tanaka 2014: Surgery	
Intervention	I	Comparator	1	
Bilicen 2017: FC (dose calcula	ted by participant's weight)	Bilicen 2017: Placebo (albumi	in in 0.9% saline)	
Collins 2017: FC (variable dose FIBTEM A5	e with aim to increase	Collins 2017: 0.9% saline Curry 2018: 0.9% saline		
to > 22 mm in the fibrinogen	arm)	Jeppsson 2016: 0.9% saline		
Curry 2018: 6g FC		Nascimento 2016: 0.9% saline		
Jeppsson 2016: 2g FC		Rahe-Meyer 2013: 0.9% saline		
Nascimento 2016: 6g FC		Rahe-Meyer 2016: 0.9% saline		
Rahe-Meyer 2013: FC (mediar	n 8g ranging from 6g to 9g)	Wikkelso 2015: 100 mL isotonic saline		
Rane-Meyer 2016: FC	unio uton in 100 met atomile	Galas 2014: 10 mL/kg CP		
wikkelso 2015: 2g FC over 20 water	minutes in 100 mL sterile	Innerhofer 2017: 15 mL/kg FFI Lance 2012: 4U FFP as a cons	P equence of massive	
Galas 2014: 60 mg/kg FC		bleeding during or after surgery		
Innerhofer 2017: 50 mg/kg FC	2	Tanaka 2014: 1 U apheresis pl	atelets (median 230 mL)	
Lance 2012: 2U FFP + 2g FC as bleeding during or after surg	s a consequence of massive ery	within 30 minutes of interver	ntion decision	
Tanaka 2014: 4g FC within 30 decision	minutes of intervention			
Population characteristics		1		
Bilicen 2017: Adults over 18 ye	Bilicen 2017: Adults over 18 years of age undergoing elective high-risk cardiac surgery			

Collins 2017: Women aged 18 years and above ≥ 24 weeks gestation with major postpartum haemorrhage Curry 2018: Adults aged 16 years and above with active bleeding and in haemorrhagic shock requiring activation of

MTP or received emergency RBC transfusion

STUDY DETAILS: Fabes 2018

Nascimento 2016: Aged 18 years and above with severe trauma (blunt or penetrating) at risk of significant haemorrhage by systolic arterial pressure < 100mmHg and requiring un-crossmatched RBS any time from injury until 30 minutes after hospital arrival

Rahe-Meyer 2013: Aged 18 or above with elective aortic valve replacement surgery

Rahe-Meyer 2016: Aged 18 or above with first 5 minutes bleeding mass of 60 - 250 g; body temperature \ge 37.5 degrees Celsius.

Wikkelso 2015: Aged > 18 years with postpartum haemorrhage defined as bleeding from the uterus or birth canal or both, within 24 hours postpartum, C-section with estimated perioperative blood loss >1 L or vaginal delivery with estimated blood loss > 0.5 L

Galas 2014: Patients age under 15 years undergoing cardiac surgery cardiopulmonary bypass, intra-operative bleeding and hypofibrinogenaemia

Innerhofer 2017: Adults (aged 18-80 years) with TSS > 15 and clinical signs or risk of substantial haemorrhage

Lance 2012: 307 patients aged 18 years and above admitted for cardiovascular, major abdominal or orthopaedic surgery expected to last \geq 120 minutes (255 patients did not meet the criteria for massive haemorrhage).

Tanaka 2014: Elective cardiopulmonary bypass procedures. If haemostatic condition of surgical field either moderate bleeding or severe then randomly assigned to trial intervention.

Length of follow-up	Outcomes measured
Databases searched: CENTRAL, MEDLINE, Embase,	Transfusion requirement
CINAHL, PubMed, PROSPERO, Transfusion Evidence	Blood loss
Library, LILACS, IndMed, KoreaMed, Web of Science	Multi-organ failure
Conference Proceedings Citation Index, ClinicalTrials.gov,	Clotting time
EUDRACT, WHO International Clinical Trials Registry	5
Platform, ISRCTN Register (from inception to 18 April	
2018).	

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): High

Description: No or one non-critical weakness – the systematic review provides an accurate and comprehensive summary of the results of the available studies that address the question of interest.

Risk of bias of included studies: The overall quality of the evidence ranged from very low to high, with most trial outcomes being rated as low quality. No trial was at low risk of bias in all domains, but the authors downgraded half the outcomes by one level for risk of bias. Domains with high risk of bias included allocation concealment, blinding of study personnel and outcome assessors, incomplete outcome data and selective reporting. The small cohorts and rare mortality and thrombotic events introduced risks of imprecision. Lastly, the trials in this review represented most of the clinical areas in which bleeding is observed, but not all clinical areas were represented in each of the intervention comparisons. Moreover, the trials did not set out to explore the outcomes of interest to this review, and this introduced inconsistency

RESOLIS.				
Outcome No. patients (No. trials)	FC n/N (%) Mean ± SD	No FC n/N (%) Mean ± SD	Risk estimate (95% CI)	Statistical significance p-value Heterogeneityª l² (p-value)
FC vs inactive control				
Mortality (all cause), up to 28 days N = 97 (2 studies) Curry 2018 Nascimento 2016	13/48 (27) 10/24 (42) 3/24 (12.5)	9/49 (18) 7/24 (29) 2/25 (8)	RR 1.46 (0.71, 2.99) RR 1.43 (0.65, 3.13) RR 1.56 (0.29, 8.55)	No significant difference p = 0.30 No significant heterogeneity I ² = 0.0%
Mortality (all-cause), up to 30 days N = 120 (1 study) Bilicen 2017	2/60 (3.3)	0/60	RR 5.00 (0.25, 102.00)	No significant difference p = 0.30
Mortality (all-cause), up to 6 weeks postnatally	0/149	0/145	Not estimable	not estimable

STUDY DETAILS: Fabe	es 2018			
N = 294 (2 studies)				
Collins 2017	0/26	0/24		
Wikkelso 2015	0/123	0/121		
Mortality (all-cause), up to 46 days post- operative	2/107 (1.9)	9/106 (8.5)	RR 0.23 (0.05, 1.01)	No significant difference p = 0.052 No significant
N = 213 (2 studies)	1/29 (3.4)	4/32 (12.5)	RR 0.28 (0.03, 2.33)	heterogeneity
Rahe-Meyer 2013 Rahe-Meyer 2016	1/78 (1.3)	5/74 (6.8)	RR 0.19 (0.02, 1.59)	l ² = 0.0%
Mortality due to bleeding up to 28 days N = 93 (2 studies)	3/45 (6.7)	1/48	RR 2.45 (0.38, 15.76)	No significant difference p = 0.35 No significant
Curry 2018	2/24 (8.3)	1/24 (4.2)	RR 2.00 (0.19, 20.61)	heterogeneity
Nascimento 2016	1/21 (4.7)	0/24	RR 3.41 (0.15, 79.47)	1-= 0.0%
Mortality due to bleeding up to 6 weeks postnatally	0/149	0/145	Not estimable	Not estimable
N = 294 (2 studies)	0/26	0/24	Not estimable	
Collins 2017	0/123	0/121	Not estimable	
VVIKKEISO 2015				
Mortality due to bleeding up to 46 days				Not estimable
N = 152 (1 study)				
Rahe-Meyer 2016	0/78	0/78	Not estimable	
Arterial thromboembolic events up to 28 days				
N = 84 (2 studies)	1/20 (5)	2/19 (10.5)	RR 0.48 (0.05, 4.82)	NR
Curry 2018	0/21	0/24	Not estimable	Not estimable
Nascimento 2016				
Arterial thromboembolic events up to 30 days				NR
N = 120 (1 study) Bilicen 2017	7/60 (11.7)	3/60 (5)	RR 2.33 (0.63, 8.60)	
Arterial thromboembolic events up to 45 days				NR
N = 61 (1 Study)	1/29 (3.4)	1/32 (3.1)	RR 1.10 (0.07, 16.85)	
Rane-Meyer 2013				
thromboembolic events up to 6 weeks postnatal				
N = 294 (2 studies)	0/26	0/24	Not estimable	Not estimable
Collins 2017	0/123	0/121	Not estimable	Not estimable
Wikkelso 2015				
Venous thromboembolic events up to 28 days				NR
Curry 2018	2/20 (10)	0/19	RR 4.79 (0.24, 93.19)	

STUDY DETAILS: Fabe	es 2018			
Venous thromboembolic events up to 30 days N = 120 (1 study) Bilicen 2017	0/60	0/60	Not estimable	Not estimable
Venous thromboembolic events up to 45 days N = 61 (1 study) Rahe-Meyer 2013	0/29	1/32 (3.1%)	RR 0.37 (0.02, 8.66)	NR
Venous thromboembolic events up to 6 weeks postnatally N = 294 (2 studies) Collins 2017 Wikkelso 2015	1/26 (3.8) 0/123	1/24 (4.2) 0/121	RR 0.92 (0.06, 13.95) Not estimable	NR Not estimable
Allergic adverse events up to 24 hours N = 244 (1 study) Wikkelso 2015	0/123	1/121 (0.83)	RD -0.01 (-0.03, 0.01)	NR
Allergic adverse events up to 10 days N = 61 (1 study) Rahe-Meyer 2013	0/29	0/32	RD 0.0 (-0.06, 0.06)	Not estimable
Allergic adverse events up to 28 days N = 45 (1 study) Nascimento 2016	0/21	0/24	RD 0.0 (-0.08, 0.08)	Not estimable
Allergic adverse events up to 30 days N = 120 (1 study) Bilicen 2017	0/60	0/60	RD 0.0 (-0.03, 0.03)	Not estimable
FC vs FFP	·		·	
Mortality (all-cause) up to 30 days N = 137 (2 studies) Lance 2012 Innerhofer 2017	1/22 (4.5) 5/50 (10)	1/21 (4.8) 2/44 (4.5)	OR 0.95 (0.06, 14.30) OR 2.20 (0.45, 10.78)	NR NR
Mortality due to bleeding N = 137 (2 studies) Lance 2012 Innerhofer 2017	0/22 0/50	0/21 0/44	Not estimable Not estimable	No significant heterogeneity l ² = 0.0% not estimable not estimable
Arterial thromboembolic events N = 43 (1 study) Lance 2012	1/22 (4.5)	0/21	RR 2.87 (0.12, 66.75)	NR
Venous thromboembolic events				
STUDY DETAILS: Fabe	es 2018			
---	---------------------------	---------------------------	---------------------------------	---------------
N = 137 (2 studies)	1/22 (4.5)	0/21	RR 3.00 (0.12, 77.83)	NR
Lance 2012	7/50 (14)	9/44 (20.5)	RR 0.63 (0.21, 1.87)	NR
Innerhofer 2017				
RBC transfusion requirement	(n = 22) 1494 (SD 714)	(n = 21) 1614 (SD 714)	MD -120.00 (-546.93, 306.93)	NR
N = 43 (1 study)				
Lance 2012				
Allergic adverse events	0/22	0/21	Not estimable	not estimable
N = 43 (1 study)				
Lance 2012				
FC vs CP		- <i>t</i>		
Mortality (all-cause) up to 7 days N = 63 (1 study) Galas 2014	0/30	0/33	Not estimable	not estimable
Mortality due to bleeding up to 7 days N = 63 (1 study) Galas 2014	0/30	0/33	Not estimable	not estimable
Arterial thromboembolic events N = 63 (1 study) Galas 2014	2/30 (6.7)	5/33 (12.2)	RR 0.44 (0.09, 2.10)	NR
Venous thromboembolic events N = 63 (1 study) Galas 2014	0/30	0/33	Not estimable	not estimable
Allergic adverse events N = 63 (1 study) Galas 2014	0/30	0/33	Not estimable	Not estimable
FC vs PLT		1	1	
Mortality (all-cause) up to 28 days N = 20 (1 study)	0/10	0/10	Not estimable	Not estimable
Tanaka 2014				
Arterial thromboembolic events N = 20 (1 study) Tanaka 2014	0/10	1/10 (10)	RR 0.33 (0.02, 7.32)	NR
Venous thromboembolic events N = 20 (1 study) Tanaka 2014	0/10	0/10	Not estimable	Not estimable
Mortality due to bleeding N = 20 (1 study) Tanaka 2014	0/10	0/10	Not estimable	Not estimable
Postoperative atrial fibrillation N = 18 (1 study) Tanaka 2014	0/6	1/12 (8)	Not estimable	Not estimable

STUDY DETAILS: Fabes 2018

Renal failure	0/6	2/12 (17)	Not estimable	Not estimable
N = 18 (1 study)				
Tanaka 2014				
Major neurologic events	0/6	2/12 (17)	Not estimable	Not estimable
N = 18 (1 study)				
Tanaka 2014				
EXTERNAL VALIDITY				
Generalisability (relevan	ce of the study popul	lation to the Guid	elines target population	on)
The evidence is directly g	eneralisable to the Au	stralian populatior	ו	
Applicability (relevance	of the evidence to the	e Australian healt	h care system)	
The evidence is directly a	pplicable to the Austra	alian healthcare co	ntext	
Additional comments				
Authors conclusions:				
The inadequate quality of	fevidence in most of t	he studies include	d in the review means t	that conclusions cannot be
drawn for clinical practice	e of the use of the inte	rventions outside (controlled trials.	
List of included relevant t	rials:			
Bilicen 2017, Collins 2017,	Curry 2018, Jeppsson 2	2016, Nascimento 2	2016, Rahe-Meyer 2013, I	Rahe-Meyer 2016, Wikkelso
2015, Galas 2014, Innerhof	er 2017, Lance 2012, Ta	naka 2014		
Cl, confidence interval; CP, cry difference; MTP, massive to per-protocol; RBC, red bloc	oprecipitate; FC, fibrinoge ransfusion protocol; NR, n od cell; RCT, randomised (en concentrate; FFP, oot reported; OR, odd controlled trial; RD, ri	fresh frozen plasma; ITT, in ratio; PICO, patient, interv sk difference; RR, relative r	tention-to-treat; MD, mean ention, comparator, outcome; PP isk; SD, standard deviation; U, uni

UK, United Kingdom; US, United States a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: McQuilten 2018

Citation

McQuilten ZK, Crighton G, Brunskill S, *et al.* Optimal dose, timing and ratio of blood products in massive transfusion: Results from a systematic review. *Transfusion Medicine Reviews*. 2018, 32: 6–15

Affiliation/Source of funds

Conflicts of interest: Zoe McQuilten, Erica Wood, Neil Waters, Tania Richter and Jess Morison are employed by Monash University, whose Transfusion Research Unit has received financial support from Australian Red Cross Blood Service, New Zealand Blood Service, the Victorian Department of Health and CSL Behring for the Australian and New Zealand Massive Transfusion Registry.

Funding: Funding support from Australian National Blood Authority. McQuilten received funding support from National Health and Medical Research Council (NHMRC) Early Career Fellowship and NHMRC Centre for Research Excellence in Patient Blood Management in Critical Care and Trauma. Transfusion Research Unit of Monash University received financial support from Australian Red Cross Blood Service, New Zealand Blood Service, Victorian Department of Health and CSL Behring for the Australian and New Zealand Massive Transfusion Registry.

Author affiliations: ZKM, GC, JKM, THR, NW and EMW affiliated with Transfusion Research Unit, Monash University. ZKM affiliated with Australian and New Zealand Intensive Care Research Centre. SB affiliated with Systematic Reviews Initiative, NHS Blood and Transplant/Oxford University Hospitals NHS Trust.

Study design	Level of evidence	Location	Setting
Systematic review and meta-analysis of RCTs (6 completed studies, 10 ongoing)	I	In total, the included trials were performed in North America (1), UK (1) and not reported (4)	Trauma centre
		Studies relevant to PICO:	
		Nascimento 2016: Canada	
		Curry 2015: UK	

Intervention	Comparator
Blood component therapy (FFP, platelets, CRYO, or fibrinogen concentrate) to RBCs	Dose, timing ratio comparisons
Nascimento 2016: Fibrinogen concentrate 6 g IV within 30 minutes after randomisation	Nascimento 2016: Placebo (normal saline)
Curry 2015: early CRYO + standard therapy (massive haemorrhage protocol)	Curry 2015: Standard therapy (6 U RBC and 4 U FFP, and TXA)

Population characteristics

Paediatric and/or adult who had critical bleeding and had received, or was anticipated to receive, a massive transfusion and measured at least one outcome of interest.

Nascimento 2016: Patients at risk for significant haemorrhage evidenced by systolic blood pressure <100 mmHg and requiring uncrossmatched RBC transfusion at any time from injury until 30 minutes after hospital arrival.

Curry 2015: Patients \geq 16 years actively bleeding and required activation of massive transfusion.

Length of follow-up	Outcomes measured
Databases searched: CENTRAL, DARE and NHSEED, PubMed, MEDLINE, EMBASE, CINAHL (EBSCOHost) and the Transfusion Evidence Library (from inception to 21 February 2017)	Mortality Morbidity Transfusion requirements
Ongoing trials searched:	
ClinicalTrials.gov, WHO International Clinical Trial Registry Platform, and ISCTRN (from inception to 20 April 2017).	
INTERNAL VALIDITY	·

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): High

Description: No or one non-critical weakness – the systematic review provides an accurate and comprehensive summary of the results of the available studies that address the question of interest.

Risk of bias of included studies: The main sources of bias risk were lack of blinding of participants and/or clinical and research staff and small sample sizes.

RESULTS:

FC versus placebo

Outcome No. trials (No. patients)	Fibrinogen concentrate n/N (%) Mean ± SD	Placebo n/N (%) Mean ± SD	Risk estimate (95% CI)	Statistical significance p-value Heterogeneity p-value (I ²)
28-day mortality (ITT) n = 45 (1 study) Nascimento 2016	2/21 (9.5)	1/24 (4.2)	RR 2.4 (0.23, 25.0)	NR
ARDS n = 45 (1 study) Nascimento 2016	0/21 (0)	2/24 (8.3)	RR 0.23 (0.01, 4.48)	NR
Multi-organ failure n = 45 (1 study) Nascimento 2016	2/21 (9.5)	2/24 (8.3)	RR 1.14 (0.18, 7.42)	NR
Infection n = 45 (1 study) Nascimento 2016	5/21 (23.8)	8/24 (33.3)	RR 0.71 (0.28, 1.85)	NR
Myocardial infarction n = 45	0	0	Not estimable	NR

(1 study)				
Nascimento 2016				
Stroke	0	0	Not estimable	NR
n = 45				
(1 study)				
Nascimento 2016				
Pulmonary embolus	2/21 (9.5)	1/24 (4.2)	RR 2.3 (0.2, 23.4)	NR
n = 45				
(1 study)				
Nascimento 2016				
Symptomatic deep vein thrombosis	0	0	Not estimable	NR
n = 45				
(1 study)				
Nascimento 2016				
Deep vein thrombosis	2/15 (13.3)	3/14 (21.4)	RR 0.62 (-0.1, 3.2)	NR
on leg doppler				
n = 29				
(Tstudy)				
	ער <i>ג</i> ון נכ <i>י</i> ב		(ד פ כד ח) ודי ו חח	ND
n = 45	5/21 (14.5)	2/24 (0.5)	RR 1.71 (0.52, 9.5)	
(1 study)				
Nascimento 2016				
RBC transfusion	Median (IOR) (n = 21)	Median (IOR) (n =	Not estimable	No significant difference
volume, units to 24	3 (2–5)	24)		p = 0.4]
hours		3 (2–4)		
n = 45				
(1 study)				
Nascimento 2016				
FFP transfusion volume,	Median (IQR) (n = 21)	Median (IQR) (n =	Not estimable	No significant difference
units to 24 hours	2.73 (2.4–3.6)	24)		p = 0.72
(1 - 45)		1.75 (1.4–2.0)		
Nascimento 2016				
DI T transfusion volume	Median (IOD) $(n = 21)$	Median (IOD) (n -	Not estimable	No significant difference
units to 24 hours	281(25-36)	24)	Notestinable	n = 0.53
n = 45	2.01 (2.0 0.0)	2.32 (1.9–2.7)		
(1 study)				
Nascimento 2016				
CRYO transfusion	Median (IQR) (n = 21)	Median (IQR) (n =	Not estimable	No significant difference
volume, units to 24	4.0 (3.1–4.6)	24)		
hours		3.5 (2.9–4.0)		p = 0.18
n = 45				
Nascimento 2016				
Cryoprecipitate + stand	ard therapy versus sta	andard therapy		
Mortality 28-day	2/20 (10)	6/21 (28.6)		No significant difference
n = 4]		0,21 (20.0)	1.1. 0.55 (0.00, 1.54)	p = 0.14
(1 study)				
Curry 2015				
ARDS	0/20	1/21 (4.8)	RR 0.35 (0.02. 8.10)	NR
	l .	· · · - /	- (,)	1

n = 41 (1 study) Curry 2015				
Multi-organ failure n = 41 (1 study) Curry 2015	1/20 (5)	0/21	RR 3.14 (0.14, 72.92)	NR
Sepsis n = 41 (1 study) Curry 2015	3/20 (15)	0/21	RR 7.33 (0.40, 133.57)	NR
Myocardial infarction n = 41 (1 study) Curry 2015	0/20	0/21	Not estimable	not estimable
Stroke n = 41 (1 study) Curry 2015	0/20	0/21	Not estimable	not estimable
Pulmonary embolus n = 41 (1 study) Curry 2015	0/20	2/21 (9.5)	RR 0.21 (0.01, 4.11)	NR
Deep vein thrombosis n = 41 (1 study) Curry 2015	0/20	1/21 (4.8)	RR 0.35 (0.02, 8.10)	NR
ICU days n = 41 (1 study) Curry 2015	Median (IQR) 11 (5-17)	Median (IQR) 18 (16-10)	Not estimable	No significant difference ρ = 0.56
In-patient days n = 41 (1 study) Curry 2015	Median (IQR) 31 (29-33)	Median (IQR) 30 (22-38)	Not estimable	No significant difference p = 0.66
RBC in 6 hours, units n = 41 (1 study) Curry 2015	Median (IQR) 7 (4-10)	Median (IQR) 7 (4-8)	Not estimable	No significant difference p = 0.49
RBC transfusion volume, units, to 24 hours n = 41 (1 study) Curry 2015	Median (IQR) 8 (5-11)	Median (IQR) 7 (6-9)	Not estimable	No significant difference p = 0.83
RBC transfusion volume, units, to 28 days n = 41 (1 study) Curry 2015	Median (IQR) 9 (7-15)	Median (IQR) 8 (7-11)	Not estimable	No significant difference p = 0.10

FFP transfusion volume, units, to 6 hours n = 41 (1 study) Curry 2015	Median (IQR) 7 (4-8)	Median (IQR) 5 (3-8)	Not estimable	No significant difference p = 0.31
FFP transfusion volume, units, to 24 hours n = 41 (1 study)	Median (IQR) 7 (4-8)	Median (IQR) 6 (3-8)	Not estimable	No significant difference p = 0.36
FFP transfusion volume, units, to 28 days n = 41 (1 study) Curry 2015	Median (IQR) 8 (4-12)	Median (IQR) 5 (3-8)	Not estimable	No significant difference p = 0.06
PLT transfusion volume, units, to 6 hours n = 41 (1 study) Curry 2015	Median (IQR) 1 (0-1)	Median (IQR) 1 (0-1)	Not estimable	No significant difference p = 0.89
PLT transfusion volume, units, to 24 hours n = 41 (1 study) Curry 2015	Median (IQR) 1 (0-2)	Median (IQR) 1 (1-2)	Not estimable	No significant difference p = 0.56
PLT transfusion volume, units, to 28 days n = 41 (I study) Curry 2015	Median (IQR) 1 (0-2)	Median (IQR) 1 (1-2)	Not estimable	No significant difference p = 0.82
Cryoprecipitate transfusion volume, units to 6 hours n = 41 (1 study) Curry 2015	Median (IQR) 2 (2-4)	Median (IQR) 2 (0-2)	Not estimable	Favours intervention p = 0.03
Cryoprecipitate transfusion volume, units to 24 hours n = 41 (1 study) Curry 2015	(n = 20) 2 (2-4)	(n = 21) 2 (0-2)	Not estimable	No significant difference p = 0.23
Cryoprecipitate transfusion volume, units to 28 days, median (IQR) n = 41 (1 study) Curry 2015	(n = 20) 2 (2-4)	(n = 21) 2 (0-2)	Not estimable	No significant difference p = 0.06
Time to first CRYO, minutes n = 41 (1 study)	Median (IQR) 60 (57-76)	Median (IQR) 108 (67-147)	Not estimable	Favours intervention p = 0.002

Curry 2015

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The study population in the systematic review is consistent with the Guideline's target population, i.e., patients who had critical bleeding and had received (or was anticipated to receive) a massive transfusion.

Applicability (relevance of the evidence to the Australian health care system)

Nascimento (2016) was conducted in a single trauma centre in Canada. Curry (2015) was conducted in two major civilian trauma centres in the UK. These studies are directly applicable to the Australian health care system.

Additional comments

Author's conclusions:

Overall, there was moderate quality of evidence for morbidity outcomes and low-quality evidence for mortality comparing RBC to FFP +/-platelet component therapy. There was low-quality evidence for mortality and other outcomes for the other interventions (early CRYO, early fibrinogen concentrate and whole blood).

List of relevant included studies:

Nascimento 2016, Curry 2015

ARDS, acute respiratory distress syndrome; CI, confidence interval; FFP, fresh frozen plasma; h, hours; ICU, intensive care unit; IQR, interquartile range; ITT, intention to treat; IV, intravenous; MD, mean difference; NR, not reported; PICO, population intervention comparator outcome; PLT, platelet; RBC, red blood cells; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation; TXA, tranexamic acid; UK, United Kingdom

STUDY DETAILS: Coccolini 2019

Citation

Coccolini F, Pizzilli G, Corbella D, Sartelli M, Agnoletti V, Agostini V, Baiocchi G.L, Ansaloni L, Catena F. Pre-hospital plasma in haemorrhagic shock management: current opinion and meta-analysis of randomised trials. World Journal of Emergency Surgery (2019) 14:6.

Affiliation/Source of funds

Conflicts of interest: The authors declared no conflicts of interest.

Funding: The authors declared no funding.

Author affiliations: General, Emergency and Trauma Surgery, ICU department, & Transfusional and Immunohaematological disorders department, Bufalini Hospital, Cesena, Italy; ICU department, Papa Giovanni XXIII Hospal, Bergamo, Italy. General Surgery department, Macerata Hospital, Macerata, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy. Emergency surgery department, Parma University Hospital, Parma, Italy.

Study design	Level of evidence	Location	Setting	
SR and MA of 2 RCTs	1	Moore 2018: US*	Trauma	
		Sperry 2018: US*		
		*sourced from primary		
		study		
Intervention		Comparator		
Moore 2018: 2 U FFP (approxi	mately 250 mL each)	Moore 2018: Standard resuscitation protocol according to		
Sperry 2018: 2 U FFP (approximately 250 mL each)		the local rules.		
		Sperry 2018: Standard resuscitation protocol according to		
		the local rules.		

Population characteristics

In both studies, inclusion criteria were similar and the eligible patients were severely injured adults (age > 18and < 90 years), with SBP 70mmHg or lower or 71–90 mmHg and hearth rate 108 beats per min thought to be due to acute blood loss, either before the arrival of air medical transport or anytime before arrival at the trauma centre.

Length of follow-up	Outcomes measured
Databases searched: MEDLINE, PubMed, CCTR, CDSR,	Mortality at 24 h and 1 month
and CINAHL (from inception to August 2018).	Acute lung injury
	Multi-organ failure

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Coccolini 2019

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Low

Description: One critical flaw with or without non-critical weaknesses – the review has a critical flaw and may not provide an accurate and comprehensive summary of the available studies that address the question of interest. *Risk of bias of included studies:* There is a potential risk of overestimating the beneficial treatment effects of RCT with a resultant risk of bias. The available evidence relies on two out-standing, large, low-biased, RCTs. However, other meta-analyses in the literature have been done with two trials.

RESULTS:

Outcome No. patients (No. trials)	FFP n/N (%) Mean ± SD	SoC n/N (%) Mean ± SD	Risk estimate (95% CI)	Statistical significance p-value Heterogeneityª I ² (p-value)
2 U FFP vs standard	care			
Mortality to 24 hours N = 626 (2 studies)	40/295 (13.6)	66/331 (19.9)	RR 0.69 (0.48, 0.99)	Favours intervention p = 0.04 Minimal heterogeneity
	8/65 (12.3)	6/60 (10)	RR 1.23 (0.45, 3.34)	l ² = 34% (p = 0.22)
Moore 2018 Sperry 2018	32/230 (13.9)	60/271 (22.1)	RR 0.63 (0.42, 0.93)	
Mortality at 1 month N = 626 (2 studies)	78/295 (26.4)	104/331 (31.4)	RR 0.86 (0.68, 1.11)	No significant difference p = 0.24 Minimal heterogeneity
Moore 2018	10/65 (15.4)	6/60 (10)	RR 1.54 (0.60, 3.98)	l ² = 38% (p = 0.21)
Sperry 2018	68/230 (29.6)	98/271 (36.3)	RR 0.82 (0.63, 1.05)	
Acute lung injury N = 626 (2 studies)	76/295 (25.8)	80/331 (24.2)	OR 1.03 (0.71, 1.50)	No significant difference p = 0.87 Minimal heterogeneity
Moore 2018	28/65 (43.1)	30/60 (50)	OR 0.76 (0.37, 1.53)	l ² = 3% (p = 0.31)
Sperry 2018	48/230 (20.9)	50/271 (18.5)	OR 1.17 (0.75, 1.81)	
Multi-organ failure N = 626 (2 studies)	149/295 (50.5)	157/331 (47.4)	OR 1.30 (0.92, 1.86)	No significant difference p = 0.14 No significant
Moore 2018	4/65 (6.2)	1/60 (1.7)	OR 3.87 (0.42, 35.63)	heterogeneity
Sperry 2018	145/230 (63.0)	156/271 (57.6)	OR 1.26 (0.88, 1.80)	l ² = 0% (p = 0.33)

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population with some caveats

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian healthcare context with few caveats

Additional comments

Authors conclusions:

The authors concluded that pre-hospital plasma infusion seems to reduce 24 h mortality in haemorrhagic shock patients, however it does not seem to influence 1 month mortality and acute lung injury and multi-organ failure.

List of included relevant trials:

Moore 2018, Sperry 2018

Cl, confidence interval; FFP, fresh frozen plasma; MA, meta-analyses; OR, odds ratio; RCT, randomised controlled trial; RR, relative risk; SBP, systolic blood pressure; SD, standard deviation; SR, systematic review; U, unit; US, United States of America

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Rijnhout 2019

Citation

Rjinhout T.W.H, Wever K.E, Marinous R.H.A.R, Hoogerwerf N, Geeraedts Jr L.M.G, Tan E.C.T.H. Is prehospital blood transfusion effective and sae in haemorrhagic trauma patients? A systematic review and meta-analysis. Injury, Int. J. Care Injured 50 (2019) 1017-1027.

Affiliation/Source of funds

Conflicts of interest: The authors declared no conflicts of interest.

Funding: No funding was utilised for this review

Author affiliations: TWH affiliated with Department of Surgery section Trauma surgery, Radboud University Medical Center, Nijmegen, the Netherlands. KEW affiliated with Systematic Review Center for Laboratory animal Experimentation, department for Health Evidence, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, the Netherlands. RHARM affiliated with Rijks University Groningen, Groningen, the Netherlands. NH affiliated with Department of Anesthesiology and Helicopter Emergency Medical Service Nijmegen lifeliner 3, Radboud university medical center, Nijmegen, the Netherlands. LMGG affiliated with Department of Surgery-section Trauma surgery Amsterdam UMC (previous VUmc), Amsterdam, the Netherlands. ECTHT affiliated with Department of Surgery–Trauma surgery, Radboud University Medical Center, Nijmegen, the Netherlands and Helicopter Emergency Medical Service Nijmegen lifeliner 3, the Netherlands

Study design	Level of evidence	Location	Setting
Baseline characteristics summarised for 49 studies, including 2 RCTs, 5 case reports, 24 case series and 18 cohort studies. Systematic Review and meta-analysis of 2 RCT and 7 cohort studies	1-111	In total, studies were performed in the US (25), Afghanistan (6), Israel (4), UK (4), Australia (3), the Netherlands (2), Austria (2), Iraq (1), Norway (1) and France (1). Meta analysis was performed in 9 studies: US (5), Afghanistan (2), the Netherlands (1) and UK (1). Studies relevant to PICO: Moore 2018: US Sperry 2018: US Shackelford 2017: Afghanistan Holcomb 2017: US O'Reilly 2014: Afghanistan	Trauma
Intervention	1	Comparator	
Moore 2018: 4 U FFP (37% of patients), 3 U FFP (31% of patients), Saline 150 (0-300) Sperry: 2 U FFP (89.1% of patients), 1 U FFP (9.1% of patients), no plasma (1.7% of patients), pRBC 42.1% and saline 500 (0-1250) Shackelford 2017: 38 patients received pRBCs, 7 patients received plasma only and 10 patients received pRBCs and plasma Holcomb 2017: Plasma only (24% of patients), pRBCs only (7% of patients) and Plasma with pRBCS (69% of patients) O'Reilly 2014: Median 1 U (0-4) pRBC and median 2 U (0-4) FFP		Moore 2018: Saline 250 (100-50 Sperry 2018: pRBCs 42.1% and Shackelford 2017: Standard care Holcomb 2017: Standard care O'Reilly 2014: Standard care	00) Saline 900 (0-1500) Ire
Population characteristics		<u> </u>	
Moore 2018: Civilian blunt trauma patients with a median New Injury Severity Scores (NISS) of 27.0 (10.0-41.0) in patients receiving intervention, and a median NISS score of 27.0 (11.5-36.0) in patients receiving comparator. Sperry 2018: Civilian blunt and penetrating trauma patients with a median Injury Severity Score (ISS) or 22 (14-33) in patients receiving intervention, and a median ISS score of 21 (12-29) in patients receiving comparator.			5) of 27.0 (10.0-41.0) in iving comparator. Score (ISS) or 22 (14-33) in omparator.

STUDY DETAILS: Rijnhout 2019

Shackelford 2017: Military trauma patients, 9 patients with gunshot wounds and 46 with wounds from explosives in patients that received intervention, 101 patients with gunshot wounds and 244 patients with wounds from explosives in patients that received comparator.

Holcomb 2017: Civilian trauma patients, 9 patients with penetrating injury with a median ISS of 24 (10-24) in patients receiving intervention, 18 patients with penetrating injury with a median ISS score of 22 (10-34) in patients receiving comparator.

O'Reilly 2014: 1 patient with blunt trauma, 50 patients with explosive trauma and 46 patients with gunshot wound with a median NISS of 22 (15-33) and median ISS of 16 (9-25) in patients receiving intervention, 3 patients with blunt trauma, 48 patients with explosive trauma and 46 patients with gunshot wound with a median NISS of 21 (14-34) and a median ISS of 16 (9-24.5) in patients receiving comparator.

Length of follow-up	Outcomes measured
Databases searched: CINAHL, Cochrane, EMBASE,	Mortality, 24 h and long-term
Pubmed (from 1988 to 1 August 2018).	Adverse events by transfusion

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating: Low

Description: One critical flaw with or without non-critical weaknesses – the review has a critical flaw and *may not* provide an accurate and comprehensive summary of the available studies that address the question of interest. *Included studies*: Majority of the literature provided mainly poor-quality evidence and was retrospective. Additionally, there is a lack of uniform guidelines for initiating pre-hospital blood transfusion and the liberal use of crystalloids in both intervention and standard care groups makes it difficult to deter the individual effect of pre-hospital blood transfusion.

RESULTS:				
Outcome No. patients	[intervention] n/N (%)	[comparator] n/N (%)	Risk estimate (95% CI)	Statistical significance p-value
(No. trials)	Mean ± SD	Mean ± SD		Heterogeneity ^a
				l² (p-value)
FFP vs saline				
Mortality to 24 hours	8/65 (12)	6/60 (10)	OR 1.26 (0.41, 3.88)	No significant difference p = 0.68
N = 125 (1 study)				
Moore 2018				
Mortality long-term	10/65 (15)	6/60 (10)	OR 1.64 (0.56, 4.82)	No significant difference
N = 125 (1 study)				p = 0.37
Moore 2018				
pRBC + plasma vs st	andard care			
Mortality to 24	8/97 (8.2)	77/398 (19.3)	RR 0.47 (0.17, 1.34)	No significant difference
hours				p = 0.16
N = 495 (2 studies)				Moderate heterogeneity
	3/54 (5.6)	67/332 (20.2)	RR 0.28 (0.09, 0.84)	l ² = 48% (p = 0.16)
Shackelford 2017	5/43 (11.6)	10/66 (15.2)	RR 0.77 (0.28, 2.09)	
Holcomb 2017				
Mortality long-term	62/364 (17.0)	185/698 (26.5)	OR 0.51 (0.36, 0.71)	No significant
N = 125 (1 study)				difference
				p < 0.0001
O'Reilly 2014	8/97 (8.2)	19/97 (19.6)	OR 0.37 (0.15, 0.89)	No significant
Shackelford 2017	6/54 (11.1)	76/332 (22.9)	OR 0.42 (0.17, 1.02)	heterogeneity
Holcomb 2017	8/43 (18.6)	14/66 (21.2)	OR 0.85 (0.32, 2.24)	I ² = 0% (p = 0.62)
Sperry 2018	40/170 (23.5	76/203 (37.4)	OR 0.51 (0.33, 0.81)	

STUDY DETAILS: Rijnhout 2019

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population with some caveats. Three of the included studies were performed in civilian populations, however two trials (O'Reilly 2014 and Shackelford 2017) were carried out in military settings.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian healthcare context with few caveats.

Additional comments

Authors conclusions:

Carrying and administering blood components is feasible and safe. Pre-hospital blood transfusion with simultaneous use of both pRBCs and plasma resulted in a reduction in the odds for long-term mortality. However, no hard conclusion could be drawn as most studies contained evidence of low-quality.

List of relevant included studies:

Moore 2018, Sperry 2018, O'Reilly 2014, Holcomb 2017, Shackelford 2017

CI, confidence interval; FFP, fresh frozen plasma; h, hours; ISS, injury severity score; ITT, intention-to-treat; MD, mean difference; NISS, new injury severity score; OR, odds ratio; PP, per-protocol; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation; U, unit

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Stabler 2020

Citation

Stabler S N, Shari Li S, Karpov A and Vu E N. Use of fibrinogen concentrate for trauma-related bleeding: A systematic-review and meta-analysis. J Trauma Acute Care Surg. 2020. 89: 1212-1224. DOI: 10.1097/TA.0000000002920

Affiliation/Source of funds

Author affiliations: Stabler S N affiliated with the Department of Critical Care and the Department of Pharmacy Services, Surrey Memorial Hospital, Surrey, British Colombia; Shari Li S affiliated with the Department of Emergency Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Karpov A and Vu E N affiliated with the Department of Emergency Medicine and Department of Critical Care, University of British Columbia, Vancouver, British Columbia, Canada.

Conflicts of interest: The authors declare no conflicts of interest

Funding: Not reported

Study design	Level of evidence	Location	Setting
Systematic review and	I-II/IV	UK: Curry 2018	Trauma
meta-analysis of RCTs (6), observational studies (10) and case series/unmatched observational trials (10).		Japan: Yamamoto 2016, Inokuchi 2017, Itagaki 2020 Canada: Nascimento 2016 Iran: Akbari 2018 Brazil: Lucena 2020 Germany: Wafaisade 2013 Austria: Innerhofer 2017,	
		Innerhoter 2013, Schochl 2014, Schlimp 2016, Schlimp 2013	
		Sweden: Almskog 2020	
		Italy: Bocci 2019	
		France: David 2016, Hamada 2020	
		Multi-country (Europe): Ziegler 2019, Schochl 2011, Nienaber 2011	
Intervention	·	Comparator	·
RCT		RCT	
Curry 2018: 6g FC		Curry 2018: Placebo	
Nascimento 2016: 6g FC		Nascimento 2016: Placebo	

STUDY DETAILS: Stabler 2020	
Akbari 2018: 2g FC	Akbari 2018: FFP (30/90) or no coagulation products
Lucena 2020: 50 mg/kg FC	(30/90)
Ziegler 2019: 50 mg/kg FC	Lucena 2020: no FC
	Ziegler 2019: Placebo
Observational	
Wafaisade 2013: FC (dose not reported)	Observational
Yamamoto 2016: 3g FC (fibrinogen <1.5g/L), 3g FC (based	Wafaisade 2013: no FC
on prehospital assessment)	Yamamoto 2016: no FC
Inokuchi 2017: 3g FC (fibrinogen <1.5g/L or need for	
MTP)+FFP	Inokuchi 2017: FFP
Itagaki 2020: median 3g FC (< 1 hour)	Itagaki 2020: no FC or delayed (>1 hour) 3g FC
Almskog 2020: median 2g (range 2-3g) FC	Almskog 2020: no FC
Bocci 2019: 2-4g FC + TXA	Bocci 2019: no FC or TXA
Hamada 2020: median 3g (range 3-6g) FC	Hamada 2020: no FC
Innerhofer 2017: median 8g (range 5-10g) FC ± PCC	Innerhofer 2017: FFP
Schochl 2011:median 6g (range 3-9g) FC ± PCC	Schochl 2011: FFP
Innerhofer 2013: median 4g (range 2-4g) FC ± PCC	Innerhofer 2013: FFP + median 4g (range 2-4g) FC ± PCC
Nienaber 2011: median 4g (range 2-4g) FC ± PCC	Nienaber 2011: FFP
Schochl 2014: median 3g (range 3-5g) FC, median 8g	Schochl 2014: no coagulation factors
(range 5-11g) FC ± PCC	
Schlimp 2016: 1-4g FC, 5-9g FC, ≥10g FC	Schlimp 2016: no FC
Schlimp 2013: median 7g (range 5-10g) FC + PCC, median 15g (range 9-17g) FC + PCC + FEP	Schlimp 2013: median 3g (range 2-5g) FC
David 2016: median 3g (range 3-3g) FC	
	David 2016: no haemostatic therapy

Population characteristics

Patients older than 16 years of age with trauma-related bleeding/coagulopathy				
Length of follow-up	Outcomes measured			
Databases searched: Medline, PubMed, EMBASE, Web of	Mortality			
Science, Cochrane Database of Systematic Reviews, CENTRAL, ClinicalTrials.gov and the WHO International	Transfusion requirements (pRBC, FFP, PLT)			
	Hospital length of stay (LOS)			
Clinical Trials Registry Platform (date limit not reported).	ICU LOS			
	Organ failure			
	Thromboembolic events			

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Moderate

Description: More than one non-critical weakness – the systematic review has more than one weakness but no critical flaws. It may provide an accurate summary of the results of the available studies that were included in the review.

Risk of bias of included studies: The authors noted that two trials were deemed to be at low risk of bias and two trials had unclear risk of bias. Akbari 2018 was deemed to be at high risk of bias due to consecutive randomisation without allocation concealment, lack of blinding and the personnel responsible for allocation also being responsible for data collection.

RESULTS:

Outcome No. patients (No. trials)	FC n/N (%) Mean ± SD	No FC n/N (%) Mean ± SD	Risk estimate (95% CI)	Statistical significance p-value Heterogeneity ^a I ² (p-value)
FC versus No FC	·	·	·	·
Mortality				
N = 575 (4 studies)				
RCT				

STUDY DETAILS: Stabler	2020			
Curry 2018 (n = 48)	10/24 (42)	7/24 (29.2)	NR	NR
Akbari 2018 (n = 60)	3/30 (10)	11/30 (36.7)	NR	p = 0.029
Lucena 2020 (n = 32)	5/16 (31.2)	3/16 (18.8)	NR	p = 0.456
Observational				
Schlimp 2016		12/193 (6.2)	NR	p = 0.0533
1-4g	4/97 (4.1)			
5-9g	5/93 (5.4)			
≥10g	8/52 (15.4)			
Mortality, overall, in-			NR	
hospital				
N = 717 (2 studies)				
				No significant
Schochl 2011	6/80 (7.5)	60/601 (10)		difference
Nienaber 2011	3/18 (16.7)	2/18 (11.1)		p = 0.69
				p = 0.50
Mortality, 28 days				
N = 269 (2 studies)				
Nascimento 2016	2/21 (10)	1/24 (4.2)	NR	NR
Inokuchi 2017	17/115 (15)	6/109 (6)	NR	p < 0.05
Mortality, 30 days				
N = 804 (2 studies)				
Wafaisade 2013	82/294 (27.9)	73/294 (24.8)	NR	p = 0.4
Almskog 2020	23/108 (21.3)	11/108 (10.2)	NR	p = 0.859
Mortality, 24 hours				
N = 491 (2 studies)				
David 2016	6/56 (11)	7/219 (29.2)	NR	NR
Stabler 2020	7/108 (6.5)	1/108 (0.9)	NR	p = 0.494
Hospital, LOS, days				
N = 728 (4 studies)				
RCT				
Curry 2018 (n = 48)	NR	NR	NR	NR
Akbari 2018 (n = 60)	Mean 11 (SD 6.1)	Mean 14.8 (SD 7.6)	NR	p = 0.045
Lucena 2020 (n = 32)	Median 12 (IQR 10,	Median 18.5 (IQR 17,	NR	NR
	22)	21)		
Observational				
Wafaisade 2013 (n = 588)	Mean 34.6 (SD 33.3)	Mean 32.8 (SD 28.4)	NR	p = 0.96
ICU LOS, days				
3 studies, N = 836				
RCT				
Lucena 2020 (n = 32)	Median 8 (IQR 5.75-	Median 11 (IQR 8.5-	NR	p = 0.021
	10)	16)		
Observational				
Wafaisade 2013 (n = 588)	Mean 17.2 (SD 17.6)	Mean 17.3 (SD 17.9)	NR	p = 0.68
Almskog 2020 (n = 216)	Median 7 (IQR 1-20)	Median 5 (IQR 1-16)	NR	p = 0.97
MOF				

STUDY DETAILS: Stabler	2020			
5 studies, N = 957				
RCT				
Curry 2018 (n = 48)	NR	NR	NR	NR
Akbari 2018 (n = 60)	2 (7.6)	7 (23.3)	NR	p = 0.106
Nascimento 2016 (n = 45)	2 (9.5)	2 (8.3)	NR	NR
Observational				
Wafaisade 2013 (n = 588)	217 (73.8)	182 (61.9)	NR	<i>p</i> = 0.002 (Favours no
Almskog 2020 (n = 216)	1 (0.9)	1 (0.9)	NR	FC)
				p = 1.00
Thromboembolic				
5 studies, N = 929				
RCT				
Curry 2018 (n = 48)	3 (12.5)	2 (8.3)	NR	NR
Nascimento 2016 (n = 45)	4 (19)	4 (16.7)	NR	NR
Lucena 2020 (n = 32)	0	0	NR	NR
Observational				
Wafaisade 2013 (n = 588)	20 (6.8)	10 (3.4)	NR	<i>p</i> = 0.06 (Favours no FC)
Almskog 2020 (n = 216)	5 (4.6)	3 (2.8)	NR	p = 0.47
Time to receive FC				
(minutes)				
2 studies, N = 93				
RCT				
Curry 2018 (n = 48)	Median 37.5 (IQR 31,	Median 40 (IQR 23,	NR	NR
	43.5) Maan EQ (SD 8)	76) Moon El (SD 8)		
Nascimento 2016 (n = 45)			NR	p = 0.6
FC + FFP versus FFP alone				
Mortality, 28 days				
I study, N = 224				
Observational				0.05
	17/109 (15)	6/115 (6)	NR	p < 0.05
FFP + FC (IPCC) Versus FC C	lione (±PCC)			
Mortality				
I study, N = 94				
RCI				
	5/50 (10)	2/44 (5)	NR	p = 0.44
ICU LOS, days				
I study, N = 94				
RCT	Median (IQR)	Median (IQR)		0.05
Innernoter 2017	9 (4-22)	10 (4.8-23.3)	NR	p = 0.65
Hospital LOS, days				
1 study, N = 94				
RCI	Median (IQR)	Median (IQR)		0.61
innernoter 2017	28 (18-28)	27 (16-28)	NR	p = 0.61
Multiple organ failure				
I study, N = 94				
RCI				0.15
Innernoter 2017	25/50 (50)	29/44 (66)	NR	p = 0.15
Thromboembolic				

STUDY DETAILS: Stabler	2020			
1 study. N = 94				
RCT				
Innerhofer 2017	7/50 (14)	9/44 (20.5)	NR	NR
EXTERNAL VALIDITY				!
Generalisability (relevance o	of the study popu	lation to the Guidelir	nes target popula	ation)
The evidence is directly gene	ralisable to the Au	stralian population. S	tudies are carried	l out in trauma patients which
are similar to trauma patient	s within the Austra	alian population.		
Applicability (relevance of t	he evidence to th	e Australian health c	are system)	
The evidence is probably app in healthcare settings similar in healthcare systems similar	licable to the Aust to Australia. Findi to Australia could	ralian healthcare con ngs from other RCTs a be sensibly applied to	text with some ca and observationa o the Australian h	aveats. Two RCTs are carried out I studies that are not carried out nealthcare context.
Additional comments				
Authors conclusions:				
randomized data available co nor any change in transfusio haemorrhagic shock and TIC entry into the trauma system	omparing FC to pla n volume. Further , with a focus on ac n of care.	acebo or standard car adequately powered a dministration as early	e, no mortality be studies are neede as possible from	enefit has been demonstrated, ad to assess the impact of FC in the point of injury or point of
List of relevant included stud	lies:			
RCTs Curry 2018, Nascimente	o 2016, Akbari 2018	, Lucena 2020		
Observational: Wafaisade 20 2014, Schlimp 2016, Schlimp 2	13, Yamamoto 2016 2013, David 2016	5, Inokuchi 2017, Alms	kog 2020, Hamac	ła 2020, Innerhofer 2017, Schochl
of stay; MOF, multiple organ fa relative risk; SD, standard devi: a. Only applicable to Level I studies and I ² < 25%; (ii) mild heteroge	ilure; NR, not reporte ation; TIC, trauma ind ; with formal meta-ar neity if I ² < 25%; mode	ritesh frozen plasma, icc d; PCC, prothrombin cor luced coagulopathy; TXA nalysis. Heterogeneity de rate heterogeneity if l ² b	, intensive care diffi nplex concentrate; , tranexamic acid :fined as follows: (i) r etween 25–50%; sub	r, IQR, Interquartine range, LOS, length RCT, randomised controlled trial; RR, no significant heterogeneity if P _{het} > 0. ostantial heterogeneity I ² > 50%.
Citation				
van den Brink D, Wirtz M R, S prothrombin complex conce Haemost. 2020. 18:2457-2367	erpa Neto A, Scho ntrate for the treat . DOI: 10.1111/jth.149'	chl H, Viersen V, Binne ment of bleeding: A s 91	ekade J and Juffe systematic review	rmans N P. Effectiveness of and meta-analysis. J Thromb
Affiliation/Source of funds				
Funding: Not reported				
<i>Author affiliations:</i> van den E Department of Intensive Car	rink D, Wirtz M R, e Medicine, Amste	Serpa Neto A, Binneka rdam UMC, Amsterda	ade J and Jufferm Im, The Netherlar	าans N P affiliated with าds
van den Brink D, Wirtz M R a Anesthesiology, Amsterdam	nd Juffermans N P UMC, Amsterdam,	affiliated with Labora The Netherlands	atory of Experime	ntal Intensive Care and
Wirtz M R affiliated with Dep	artment of Trauma	a Surgery, Amsterdam	n UMC, Amsterda	m, The Netherlands
Serpa Neto A affiliated with [Department of Crit	ical Care Medicine, Ho	ospital Israelita Al	bert Einstein, São Paulo, Brazil
Schochl H affiliated with Dep Academic Teaching Hospital	artment of Anesth of the Paracelsus	esiology and Intensiv Medical University, Sa	e Care Medicine, Izburg, Austria ar	AUVA Trauma Centre Salzburg, nd Institute for Experimental and

Clinical Traumatology, AUVA Research Centre, Vienna, Austria

Viersen V affiliated with Department of Anesthesiology, Amsterdam UMC, Amsterdam, The Netherlands Juffermans N P affiliated with Department of Intensive Care Medicine, OLVG Hospital, Amsterdam, The Netherlands *Conflicts of interest:* The authors declare no conflicts of interest

Study design	Level of evidence	Location	Setting
Systematic review and meta-analysis of prospective studies (2) and retrospective studies (15)	1-111	Not reported	Surgical (12), trauma (4) and other (1).

STUDY DETAILS: van den Brink 2020	
Intervention	Comparator
Zeeshan 2019: 4-factor PCC +FFP	Zeeshan 2019: FFP
Jehan 2018: 4-factor PCC +FFP	Jehan 2018: FFP
Joseph 2016: 3-factor PCC +FFP	Joseph 2016: FFP
Joseph 2014: 3-factor PCC +FFP	Joseph 2014: FFP
DeLoughery 2016: 4-factor PCC	DeLoughery 2016: rFVIIa
Population characteristics	
Patients \geq 18 years of age with active bleeding	
Length of follow-up	Outcomes measured
Databases searched: MEDLINE, EMBASE, CINAHL (from	All-cause mortality
1952 to April 2020).	Blood loss
	RBC utilisation
	Thromboembolic events
INTERNAL VALIDITY	

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Low

Description: One critical flaw with or without non-critical weaknesses – the review has a critical flaw and may not provide an accurate and comprehensive summary of the available studies that address the question of interest. *Risk of bias of included studies*: The authors noted that the review may be at risk of language bias. Of the 17 included studies, 13 were assessed as having a good quality, one had fair quality and three were rated as having a poor quality.

RESULTS:

Outcome No. patients (No. trials)	PCC n/N (%) Mean ± SD	No PCC n/N (%) Mean ± SD	Risk estimate (95% CI)	Statistical significance p-value Heterogeneityª
				l² (p-value)
PCC versus no PCC				
Mortality	72/364 (19.8)	159/557 (28.5)	OR 0.64 (0.46, 0.88)	Favours PCC
N = 921				p = 0.007
(4 studies)				No heterogeneity
Jehan 2018	10/40 (25)	26/80 (32.5)	OR 0.69 (0.29, 1.63)	l ² = 0% (<i>p</i> = 0.81)
Joseph 2014	15/63 (23.8)	53/189 (28.0)	OR 0.80 (0.41, 1.55)	
Joseph 2016	6/27 (22.2)	15/54 (27.8)	OR 0.74 (0.25, 2.20)	
Zeeshan 2019	41/234 (17.5)	65/234 (27.8)	OR 0.55 (0.35, 0.86)	
RBC utilisation,	N = 364	N = 557	MD -2.99 (-4.06, -1.91)	Favours PCC
units				p < 0.00001
N = 921				Significant heterogeneity
(4 studies)	7±3 (n = 40)	9±5 (n = 80)	MD -2.00 (-2.44, -0.56)	l ² = 68% (p < 0.0001)
Jehan 2018	6.6±4.1 (n = 63)	10±8.3 (n = 189)	MD -3.40 (-4.96, -1.84)	
Joseph 2014	3.2±1.9 (n = 27)	5.4±4.1 (n = 54)	MD -2.20 (-3.51, -0.89)	
Joseph 2016	6±4 (n = 234)	10±4 (n = 234)	MD -4.00 (-4.72, -3.28)	
Zeeshan 2019				
Thromboembolic	18/364 (4.9)	27/557 (4.8)	OR 0.90 (0.49, 1.67)	No significant difference
events				p = 0.74
N = 921				No heterogeneity
(4 studies)				l ² = 0% (p < 0.50)
Jehan 2018	1/40 (2.5)	2/80 (2.5)	OR 1.00 (0.09, 11.37)	
Joseph 2014	2/63 (3.2)	3/189 (1.6)	OR 2.03 (0.33, 12.45)	
Joseph 2016	4/27 (14.8)	5/54 (9.3)	OR 1.70 (0.42, 6.95)	
Zeeshan 2019	11/234 (4.7)	17/234 (7.3)	OR 0.63 (0.29, 1.38)	

STUDY DETAILS: van den Brink 2020

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is not directly generalisable to the Australian population but could be sensibly applied. Populations include trauma and cardiothoracic patients. Despite limited population descriptions and potential heterogeneity across populations, this could be sensibly applied to the Australian population.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats. The authors did not report on the location of each study.

Additional comments

Authors conclusions:

PCC administration in bleeding patients not using anticoagulants had no effect on mortality in the whole cohort of patients. However, in trauma patients, a resuscitation strategy using both PCC and FFP transfusion was associated with reduced mortality when compared to a resuscitation strategy involving solely FFP. Also, PCC reduced the need for RBC transfusions when compared with treatment strategies not involving PCC. In bleeding cardiac surgery patients, PCC administration reduced perioperative blood loss. Risk of TE events were not increased. However, results are subject to considerable heterogeneity and should be interpreted with caution. These data, derived from observational studies, can be used to design trials to further explore the effectivity of PCC in different clinical scenarios of bleeding.

List of relevant included studies:

Zeeshan 2019, Jehan 2018, Joseph 2016, Joseph 2014, DeLoughery 2016

Cl, confidence interval; FFP, fresh frozen plasma; MD, mean difference; OR, odds ratio; PCC, prothrombin complex concentrate; RBC, red blood cell; rFIIA, recombinant factor VII; SD, standard deviation; TE, thromboembolic event

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Zaidi 2020

Citation

Zaidi A, Kohli R, Daru J, Estcourt L, Khan K S, Thangaratinam S, Green L. Early Use of Fibrinogen Replacement Therapy in Postpartum Hemorrhage-A Systematic Review. 2020. 34:101-107.

Affiliation/Source of funds

Funding: The study was funded by Barts Charity. The funders had no role in the Study design, data collection, analysis or preparation of this article. The views expressed in this article are those of the authors and not necessarily of the funders.

Affiliations: Zaidi A, Daru J, Khan K S and Shakila T affiliated with Barts Research Centre for Women's Health, Queen Mary University of London, UK

Zaidi A, Kohli R, Thangaratinam S and Green L affiliated with Barts Health, NHS Trust, London, UK

Kohli R affiliated with Wolfson Institute, Queen Mary University of London, UK

Estcourt L and Green L affiliated with NHS Blood and Transplant, UK, Radcliffe Department of Medicine, University of Oxford, UK and Blizzard Institute, Queen Mary University of London, UK.

Conflicts of interest: Green L, Thangaratinam S, Daru J, and Khan K S are investigators of the ongoing ACROBAT trial reported in this review. Daru J has received fees from Pharmacosmos for advisory work.

Study design	Level of evidence	Location	Setting	
SR of RCTs (5)	I	Wikkelso 2015: Denmark	Obstetrics	
		Collins 2017: Not reported		
Intervention		Comparator		
Wikkelsø 2015: 2g FC		Wikkelsø 2015: 100 mL normal saline		
Collins 2017: 1g FC guided by viscoelastic testing		Collins 2017: 50 mL normal saline		
Population characteristics				

Population characteristics

Wikkelsø 2015: Women with PPH, Caesarean section with an estimated perioperative blood loss > 1L or vaginal delivery with either estimated blood loss > 0.5L and intended manual removal of placenta or estimated blood loss > 1L and intended manual exploration of the uterus because of continuous bleeding after delivery of the placenta. Collins 2017: Only women with ongoing major PPH were screened with ROTEM

STUDY DETAILS: Zaidi 2020

Length of follow-upOutcomes measuredDatabases searched: CDSR and CENTRAL, MEDLINE, Embase, CINAHL, PubMed, Transfusion Evidence Library, LILACS, Web of Science Conference Proceedings Citation Index-Science, Clinical Trials.gov and the WHO International Clinical Trials Registry Portal (from inceptionTransfusion requirements Mortality, 24 hours, 7 days and 30 days Thrombosis ICU length of stay		
Databases searched: CDSR and CENTRAL, MEDLINE, Embase, CINAHL, PubMed, Transfusion Evidence Library, LILACS, Web of Science Conference Proceedings Citation Index-Science, Clinical Trials.gov and the WHOTransfusion requirementsMortality, 24 hours, 7 days and 30 daysThrombosisICU length of stay	Length of follow-up	Outcomes measured
to June 2019). Hospital length of stay	Databases searched: CDSR and CENTRAL, MEDLINE, Embase, CINAHL, PubMed, Transfusion Evidence Library, LILACS, Web of Science Conference Proceedings Citation Index-Science, ClinicalTrials.gov and the WHO International Clinical Trials Registry Portal (from inception to June 2019).	Transfusion requirements Mortality, 24 hours, 7 days and 30 days Thrombosis ICU length of stay Hospital length of stay

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Low

Description: One critical flaw with or without non-critical weaknesses – the review has a critical flaw and may not provide an accurate and comprehensive summary of the available studies that address the question of interest.

Risk of bias of included studies: Collins 2017 was classified as having an overall low risk of bias. The authors acknowledged that Collins 2017 was funded by CSL Behring, which is the manufacturer of the fibrinogen concentrate. Wikkelsø 2015 was rated to have an unclear risk of bias. The main sources of bias in Wikkelsø 2015 were attrition bias due to incomplete outcome data reporting.

RESULTS:					
Outcome No. patients (No. trials)	FC n/N (%) Mean ± SD	No FC n/N (%) Mean ± SD	Risk estimate (95% Cl)	Statistical significance p-value Heterogeneityª l² (p-value)	
FC versus no FC	·	·	·		
Need for RBC transfusion < 6 weeks post PPH N = 244 (1 study)	25/123 (20.3)	26/121 (21.5)	NR	No significant difference p = 0.88	
Wikkelsø 2015					
Transfusion requirement, units at 7 days N = 55 (1 study) Collins 2017	2.07	2.78	Adjusted rate ratio 0.72 (0.30, 1.70)	No significant difference p = 0.45	
Mortality, 30 days N = 299	0/151	0/148	NR	p = NR	
(2 studies) Collins 2017 Wikkelsø 2015	0/28 0/123	0/27 0/121			
Thrombosis up to 6 weeks N = 55 (1 study) Collins 2017	1/28 (3.6)	1/27 (3.7)	NR	NR	
Length of hospital stay, median days (IQR) N = 55 (1 study) Collins 2017	3 (2-5)	3 (2-4)	NR	No significant difference p = 0.13	
Length of ICU stay, median days (IQR) N = 55	16 (12-25)	20.5 (10.5-28.5)	Difference 0.90	NR	

STUDY DETAILS: Zaidi 2020

(1 study)

Collins 2017

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population. The studies were conducted in women with PPH including women with and without Caesarean sections and is representative of the Australian population.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian healthcare context with few caveats. The authors reported on the location of one study in Denmark which has a similar healthcare system to Australia.

Additional comments Authors conclusions:

This review has demonstrated the paucity of evidence on the early use of fibrinogen replacement therapies in postpartum haemorrhage. The small sample size of included studies and their heterogeneity warrants us to interpret these results with extreme caution until further evidence become available. Therefore, future trials are urgently needed to assess the clinical efficacy and safety of early fibrinogen replacement therapy (particularly CRYO) in PPH. Evidence is required to determine the optimal dose of fibrinogen replacement therapy in PHH as well as compare the cost-effectiveness of CRYO transfusion with fibrinogen concentrate, and protocol-driven approaches with targeted-therapy for fibrinogen replacement therapy.

List of relevant included studies:

Wikkelso 2015, Collins 2017

Cl, confidence interval FC, fibrinogen concentrate; ICU, intensive care unit; IQR, inter quartile range; NR, not reported; PPH, postpartum haemorrhage; RCT, randomised controlled trial; ROTEM, rotational thromboelastometry; SD, standard deviation

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

Randomised controlled trials

No additional studies identified.

Observational / cohort studies

STUDY DETAILS: Inokuchi 2017

Citation

Inokuchi, K., Sawano, M., Yamamoto, K., Yamaguchi, A., & Sugiyama, S. (2017). Early administration of fibrinogen concentrates improves the short-term outcomes of severe pelvic fracture patients. Acute medicine & surgery, 4(3), 271–277. doi:10.1002/ams2.268

Affiliation/Source of funds

Conflicts of interest: The authors declared no conflicts of interest.

Funding: Details on funding not provided.

Author affiliations: KI, MS, AY and SS affiliated with Department of Emergency and Critical Care Medicine, Saitama Medical Center, Saitama Medical University. KY affiliated with Department of Transfusion Medicine and Cell Therapy, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan.

Study design	Level of evidence	Location	Setting		
Retrospective cohort study	III-3	Saitama, Japan	Single centre, trauma		
Intervention	·	Comparator	·		
Group L (n = 109)		Group E (n = 115)	Group E (n = 115)		
Revision of massive transfusi in Figure 1) to include early o fibrinogen concentrate (FC)	on protocol (MTP, described ff-label admiration of 3g	MTP prior to revision without FC			
FC administered if plasma fil 150 mg/dL – April 2013 to Mar	orinogen levels were below rch 2014				
FC administered when MTP March 2015	activated from April 2014 to				
Population characteristics		·			
Patients with pelvic fractures	s from blunt trauma requiring	activation of MTP			
Length of follow-up		Outcomes measured			
Enrolled eligible patients hospitalised from January 2011 to March 2015		28-day mortality Number of blood transfusions within 7 days of admission			
Missing data for physical status on admission: 13/115 in Group E and 11/109 in Group L		Implementation of interventions including trans-arterial embolisation (TAE), injury to TAE, admissions to TAE			

Method of analysis

Missing data for haematological status on admission:

14/115 in Group E and 12/109 in Group L

The χ 2-test was used for evaluation of intergroup differences in sex, hospitalisation routes, medications, allo-type packed red blood cells transfusion, and implementation of the interventions. Mann–Whitney's U-test was used for others. The significance level was 5% (p < 0.05).

external fixation, internal fixation and pelvic packing

Impacts of the revision and the characteristics, injury severity, and coagulation status on 28-day survival were evaluated using Cox's multivariate proportional hazard model. The groups (the revision), age, sex, interval between injury and admission, Injury Severity Score, Revised Trauma Score, and blood haemoglobin concentration, prothrombin time – international normalized ratio, activated partial thrombin time, serum fibrinogen concentration, and platelet count on admission were assigned to the model as explanatory covariates, and 28-day mortality as the objective variate. Their impact on survival was evaluated in terms of hazard ratios adjusted for other covariates. Impact of the revision on the outcome was also evaluated by the univariate log–rank test between the survival curves, and relative risk of 28-day mortality between the groups.

INTERNAL VALIDITY

Overall risk of bias (descriptive)

Rating: Serious

Description: The study has some important problems and cannot be considered comparable to a well-performed randomised trial.

STUDY DETAILS: Inokuchi 2017

Limitations were missing data and the substantial change in threshold and timing for administration of FC to the patients in Group L during the study period. Another major limitation derives from the absence of a clear objective criterion for activation of MTP throughout the study period. The activation was left to the clinical decision, and its consistency among the groups was not guaranteed. In the same context, consistency for the implementation of Surgical or radiological interventions was not guaranteed. The possible bias in the activation of MTP and the implementation of interventions may influence the discrepancy of the survival between the groups.

RESULTS

Population analysed	Comparator		Intervention	
Available	115		109	
Analysed	115		109	
Outcome	Comparator n/N (%) Mean ± SD	Intervention n/N (%) Mean ± SD	Risk estimate (95% CI)	Statistical significance p-value
Group E (pre revision)	vs Group L (post revisi	on)		
28-day mortality All ISS ISS ≥ 21	17/115 (15)	6/109 (6)	RR 0.37 (0.15, 0.91) RR 0.33 (0.13, 0.84)	Favours revision p = 0.022 p = 0.009
Number of blood transfusion within 7 days of admission - packed RBCs, units	Median (IQR) 10 (4, 22)	Median (IQR) 10 (6, 20)	NR	No significant difference p = 0.958
 packed RBCs ≥ 1 unit 	78/115 (67.8)	68/109 (62.4)	NR	No significant difference $p = 0.409$
 packed RBCs ≥ 6 units 	55/115 (47.8)	54/109 (49.5)	NR	No significant difference $p = 0.297$
- allo-type packed RBCs	2/115 (1.7)	3/109 (2.8)	NR	No significant difference $p = 1.000$
- fresh frozen plasma, units	Median (IQR) 10 (6, 20)	Median (IQR) 8 (6, 20)	NR	No significant difference $p = 0.685$
- platelet concentrate, units	20 (20, 37.5) Median IQR)	20 (20, 20) Median (IQR)	NR	No significant difference p = 0.251
Trans-arterial embolisation	36/115 (31)	28/109 (26)	NR	No significant difference $p = 0.764$
Interval between injury and completion of TAE, minutes	Median (IQR) 184 (156, 220)	Median (IQR) 178 (146, 211)	NR	No significant difference p = 0.386
Interval between admission and completion of TAE, minutes	Median (IQR) 114 (88.5, 128)	Median (IQR) 95 (66, 124)	NR	No significant difference p = 0.279
External fixation	13/115 (11)	14/109 (13)	NR	No significant difference $p = 0.838$
Internal fixation	42/115 (36)	43/109 (39)	NR	No significant difference p = 0.681
Pelvic packing	3/115 (3)	2/109 (2)	NR	No significant difference p = 1.000

STUDY DETAILS: Inokuchi 2017

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population, eligible patients were those with pelvic fractures due to blunt trauma requiring MTP.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian healthcare context with few caveats, depending on the composition of the MTP.

Additional comments

Author's conclusions:

The revision of MTP to include aggressive off-label treatment with fibrinogen concentrate was related to improved short-term outcomes of severe pelvic fracture patients. However, due to the limitations of the study, the improvement could not be attributed totally to the revision.

Cl, confidence interval; FC, fibrinogen concentrate; ISS, injury severity score; MTP, massive transfusion protocol; NR, not reported; RBC, red blood cells; SD, standard deviation; TAE, trans-arterial embolization.

E7 Tranexamic acid (Question 7)

Systematic reviews/meta-analyses

STUDY DETAILS: Ausset 2015

Citation

Ausset, S., Glassberg, E., Nadler, R., Sunde, G., Cap, A. P., Hoffmann, C., Plang, S. & Sailliol, A. 2015. Tranexamic acid as part of remote damage-control resuscitation in the prehospital setting: A critical appraisal of the medical literature and available alternatives. *Journal of Trauma and Acute Care Surgery*, 78(6), S70-S75. doi: 10.1097/TA.0000000000000640.

Affiliation/Source of funds

Details on funding were not provided.

The authors declared no conflicts of interest. (pS74)

Author affiliations: Department of Anesthesiology and Intensive Care (S.A.), Percy Military Hospital; and Centre de Transfusion Sanguine des Arme ´es rue Raoul Batany (S.P., A.S.), Clamart; and French Military Health Service Academy-Ecole du Val-de-Gra ˆce (C.H.), Paris, France; The Trauma and Combat Medicine Branch (E.G., R.N.), the Surgeon Generals' Headquarters, Israel Defense Forces Medical Corps, Ramat Gan, Israel; Norwegian Air Ambulance Foundation (G.S.), Drøbak, Norway; and Blood Research Program (A.P.C.), US Army Institute of Surgical Research, JBSA-Fort Sam Houston, Texas

Study design	Level of evidence	Location	Setting
Systematic review of meta- analyses, retrospective analyses, cohort studies, case control studies and observational studies *only data from studies relevant to the Guidelines are extracted here	1	Apodaca 2013: Norway Benov 2014: Israeli-Syrian border Lipsky 2014: Israel Morrison 2012, Morrison 2013: Afghanistan Vu 2013: Canada Countries of origin for remaining individual studies not provided.	Shakur 2010, Cole 2014, Valle 2014: hospital, trauma Morrison 2012, Morrison 2013: hospital, war surgery Apodaca 2013, Benov 2014, Lipsky 2014, Vu 2013: prehospital
Intervention		Comparator	
Shakur 2010: TXA 1 g over 10 min, then 1 g over 8 hrs Lipsky 2014: TXA administered with freeze-dried plasma TXA administered for all remaining individual studies, but no further information provided.		Shakur 2010, Cole 2014, Morri Morrison 2013: CRYO, TXA and	son 2012, Valle 2014: No TXA d CRYO, no TXA or CRYO
Demulation chave stavistics			

Population characteristics

Relevant to this review (trauma setting)

Shakur 2010 (CRASH-2): RCT in trauma patients, wide range of injury severities, most enrolled in low-income countries *Cole 2014:* Prospective cohort study in civilian adult patients with severe trauma, Injury Severity Score (ISS) > 15 (N = 385)

Morrison 2012 (MATTERS): Retrospective study in war surgery patients receiving ≥ 1 U packed red blood cells Morrison 2013 (MATTERS II): Prospective study in war surgery patients, requiring ≥ 1 U packed red blood cells Valle 2014: Retrospective case-control study in civilian trauma patients (N = 300)

Relevant, but study type does not meet the PICO criteria for this review

Apodaca 2013: Single-arm descriptive study, haemorrhaging aeromedical patients; trauma and non-trauma

Benov 2014: Single-arm descriptive study, Syrian casualties secondary to Syrian civil war

Lipsky 2014: Single-arm descriptive study, Israeli Defence Force casualties

Vu 2014: Single-arm descriptive study, aeromedical evacuation patients

Not relevant to these Guidelines (not trauma)

Ker 2012: Meta-analysis of 129 trials involving surgical patients, majority in elective cardiac surgery

Zufferey 2006: Meta-analysis of 18 trials involving orthopaedic surgery

STUDY DETAILS: Ausset 2015

Poeran 2014: Retrospective analysis of orthopaedic patients, undergoing total hip or knee arthroplasty over 6-year period in 510 US hospitals

Berntorp 2001: Case Control Study in female patients with menorrhagia

Sundström 2009: Case Control Study in female patients with menorrhagia

Length of follow-up	Outcomes measured			
Citations published between Jul 2003 and Dec 2015. No details provided regarding follow up post TXA intervention.	Mortality, blood transfusion, need for surgery, blood products transfused, ISS, incidence of shock, multiorgan failure (MOF), thromboembolic events (VTE, DVT, PE)			
INTERNAL VALIDITY				
Overall QUALITY of the systematic review (descriptive)				

Rating (AMSTAR): Critically low

Description: More than one critical flaw with non-critical weaknesses – the review has more than one critical flaw and should not be relied on to provide an accurate and comprehensive summary of the available studies.

The authors did not provide any information regarding inclusion criteria, research question/s, Study design selection, search strategy, duplicate study selection and data extraction, excluded studies, funding sources for individual studies, or an investigation of publication bias. The authors did not formally analyse the quality of other included studies. No meta-analysis was performed, and information regarding individual study populations, interventions, comparators and results was often insufficient and/or inconsistent.

Risk of bias of included studies:

Key issues with Shakur 2010 included reporting bias (no systematic adverse event reporting, making it difficult to interpret results relating to thrombotic risk, and reporting of blood loss and injury severity), and potential for confounding and measurement error (few patients came from countries with early access to blood products or availability of state-of-the-art trauma care). There were issues with a confounding effect of heterogeneous rFVIIa use in for Morrison 2013 and limitations of a retrospective Study design suggested for Morrison 2012, in addition to potential confounding factor of increased CRYO use for the TXA group (noting that this confounding factor was accounted for in the follow up study, Morrison 2013). Potential selection bias and a lack of multivariate analysis were identified as important flaws in Valle 2014. Confounding was also identified in Lipsky 2014 with regards to an association with thromboembolic events. The authors also admit that, due to the setting of this and other pre-hospital studies, longer term complications of TXA administration could not be assessed.

RESULTS:						
Outcome	ТХА	No TXA	Risk estimate	Statistical significance		
No. patients	n/N (%)	n/N (%)	(95% CI)	<i>p</i> -value		
(No. trials)	Mean ± SD	Mean ± SD		Heterogeneity ^a		
				l² (p-value)		

TXA versus no TXA (trauma setting)

	aama seeing)			
Mortality, overall N = 23 124				Meta-analysis not performed
(1 RCT, 4 Coh) Shakur 2010 Morrison 2012 Morrison 2013 Valle 2014 Cole 2014	NR (14.5%) NR/293 (17.4%) NR NR/150 NR/160 (8%)	NR (16%) NR/603 (23.9%) NR NR/150 NR/225 (8%)	ARR 0.015 NR OR 0.61 (0.42, 0.89) NR NR	NR, Favours TXA ^b NR, Not significant ^c NR, Favours TXA ^d NR, Not significant ^e NR, Not significant ^f
Mortality, subgroups N = NR (2 Coh) Morrison 2012 patients requiring a massive transfusion Cole 2014 patients with shock	NR (14.4%)	NR (28.1%)	or 7.2 (3.0, 17.3) or 0.16 (0.31, 0.86)	NR, Favours TXA NR, Favours TXA ^f
Vaso-occlusive events, overall N = 20211 (1 RCT)	NR (1.7%)	NR (2.0%)	NR	No significant difference NR Heterogeneity NA

STUDY DETAILS: A	usset 2015			
Shakur 2010				
Venous				Meta-analysis not
thromboembolism				performed
N = NR (1 RCT, 1 Coh)				
Shakur 2010	NR	NR	NR	
Morrison 2012	NR	NR	NR	NR, Not significant
				NR, Not significant
Pulmonary	NR	NR	NR	No significant difference
				NR
N = 20211 (1 RC1)				Heterogeneity NA
Shakur 2010				
Stroke	NR	NR	NR	No significant difference
N = 20211 (1 RCT)				NR
Shakur 2010				Heterogeneity NA
Myocardial	NR	NR	NR	Favours TXA
infarction				NR
N = 20211 (1 RCT)				Heterogeneity NA
Shakur 2010				
Multiorgan failure	NR/160 (30%)	NR/225 (37%)	NR	No significant difference
N = NR (1 Coh)				NR
Cole 2014				Heterogeneity NA
Patients with shock	NR	NR	OR 0.27 (0.1 , 0.73)	Favours TXA ^g
Cryoprecipitate vers	us no cryoprecipitate			
Mortality	NR	NR	OR 0.61 (0.40,	NR, Favours TXA ^h
N = NR (1 Coh)			0.94)	
Morrison 2013				
TXA and cryoprecipit	tate versus no TXA or o	cryoprecipitate		
Mortality	NR	NR	OR 0.34 (0.20,	NR, Favours TXA [†]
N = NR (1 Coh)			0.58)	
Morrison 2013				
EXTERNAL VALIDI	ΓY			
Generalisability (rele	vance of the study po	pulation to the Guideli	nes target populatio	on)

The evidence is not directly generalisable to the Australian population and it is hard to judge whether it is sensible to apply.

The review provides both insufficient and inconsistent data in regard to populations, severity and type of injury and intervention methods. Moreover, Shakur 2010 reportedly involved a population with a wide range of injury severity, while Apodaca 2013 included non-trauma patients. When taking these issues into account, along with the very low INTERNAL VALIDITY of the review, it is difficult to judge the level of relevance to the Guidelines target population.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats.

Three of the studies (Morrison 2012, Morrison 2013 and Benov 2014) occurred in a wartime context. Moreover, Poeran 2014 took place in the USA health care context, which is not comparable to the Australian health care system. Notwithstanding this, three of the studies occurred in health care systems that are comparable to Australia: Vu 2013 (Canada), Apodaca 2013 (Norway) and Lipsky 2014 (Israel).

Given the wide variety of health care contexts mentioned above, in addition to the absence of country of origin data for the remaining eight studies, it is difficult to comment on the applicability of these results.

Additional comments

Authors conclusions:

There are no better pharmacologic haemostatic interventions than TXA in the prehospital context.

STUDY DETAILS: Ausset 2015

That there was high quality evidence favouring use of TXA to reduce bleeding in elective surgery, and to decrease mortality in trauma patients. However, they contended that this mortality reduction had occurred over a wide range of injury severities in the included studies. They also suggested that TXA administration within the first hour post-injury was most effective, with prehospital intervention being the best way to ensure this occurred. Notwithstanding this, they admitted that data involving prehospital TXA use was limited. Evidence showed that there was a low risk of adverse effects.

Despite the above conclusions, the authors acknowledged that ongoing research into TXA use in trauma settings was needed, including more exploration into associations with adverse thrombotic events. They also suggested that TXA use in the prehospital setting should be considered in combination with transfusion of blood products such as freezedried plasma, RBCs and fibrinogen.

List of included studies

Shakur 2010, Cole 2014, Morrison 2012, Morrison 2013, Valle 2014

Cl, confidence interval; Coh, cohort; ITT, intention-to-treat; MD, mean difference; NR, not reported; PP, per-protocol; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation; TBI, traumatic brain injury; TXA, tranexamic acid

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet
 > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

- b. Ausset 2015 noted that a post-hoc analysis had revealed when TXA was administered within 1 hour after trauma, mortality was reduced by one-third. Between hours 1–3, mortality was reduced by one-fifth. When given after the third hour, mortality due to bleeding appeared to increase.
- c. Ausset 2015 noted that the survival benefit of TXA in Morrison 2012 was confounded by the retrospective Study design, with CRYO used more often in the TXA massive transfusion group. Factors significantly associated with death in the entire cohort included: Glasgow Coma Score of 8 or less, hypotension, and coagulopathy.
- d. Propensity score adjusted for predictors of mortality, including RBCs, FFP, and plasma. After adjustment for platelet administration the OR was 0.62 (95% CI 0.43, 0.90). Ausset 2015 noted that the survival benefit of TXA in Morrison 2013 remained confounded by the heterogeneous use of rFVIIa.
- e. Ausset 2015 noted that mortality was higher in the TXA group, but that the study by Valle (2014) was confounded by the propensity score failing to account for important variables, resulting in the TXA group being more severely injured than the control group. No multivariate analysis was performed to account for these differences.
- f. The survival benefit of TXA in Cole 2014 is confounded. Patients who received TXA had higher ISS, incidence of shock (base deficit > 6 mEq/L) and transfusion requirements. A multivariate analysis in the subgroup of patients with shock revealed an effect favouring TXA OR 0.16 (0.31, 0.86).
- g. The benefit of TXA in Cole 2014 is confounded. Patients who received TXA had higher ISS, incidence of shock (base deficit > 6 mEq/L) and transfusion requirements. A multivariate analysis in the subgroup of patients with shock revealed an effect favouring TXA OR 0.27 (0.1, 0.7).
- h. Propensity score adjusted for predictors of mortality, including RBCs, FFP, and plasma. After adjustment for platelet administration the OR was 0.62 (95% CI 0.39, 0.91). Ausset 2015 noted that the survival benefit of TXA in Morrison 2013 remained confounded by the heterogeneous use of rFVIIa.
- i. Propensity score adjusted for predictors of mortality, including RBCs, FFP, and plasma. After adjustment for platelet administration the OR was unchanged. Ausset 2015 noted that the survival benefit of TXA in Morrison 2013 remained confounded by the heterogeneous use of rFVIIa.

STUDY DETAILS: Ker 2015

Citation

Ker, K., Roberts, I., Shakur, H., et al. 2015. Antifibrinolytic drugs for acute traumatic injury. *Cochrane Database of Systematic Reviews*, CD004896.

Affiliation/Source of funds

The Cochrane Review project was supported by the National Institute for Health Research, UK, through Cochrane Infrastructure funding to the Cochrane Injuries Group.

All authors declared an interest in clinical trials assessing TXA (including those for postpartum haemorrhage, acute traumatic brain injury, GI bleeding, and trauma)

Study design	Level of evidence	Location	Setting
Systematic Review of RCTs	Levell	<i>CRASH-2 2010:</i> 40 countries not specified	Trauma (in-hospital)
		Yutthakasemsunt 2013: Thailand	
		McMichan 1982: Australia	
Intervention		Comparator	
Aprotinin or tranexamic acid	(TXA)	Placebo	

STUDY DETAILS: Ker 2015	
<i>CRASH-2 2010</i> : 1 g TXA loading dose over 10 minutes followed by infusion of 1g over 8 hours	
<i>Yutthakasemsunt 2013</i> : 1 g TXA loading dose over 30 minutes followed by infusion of 1g over 8 hours	
<i>McMichan 1982</i> : 500 KIU aprotinin followed by 300,000 IV every six hours for 96 hours	
Population characteristics	

People of any age following acute traumatic injury.

CRASH-2 2010: Adult trauma patients with, or at risk of, significant bleeding. Includes 270 patients who also had TBI (substudy).

Yutthakasemsunt 2013: Adults patients with moderate to severe traumatic brain injury

McMichan 1982: Patients with a combination of hypovolaemic shock and major fractures of the lower limb and or pelvis.

Length of follow-up	Outcomes measured	
Follow-up generally not specified, but usually period of hospitalisation	<i>All trauma</i> : All-cause mortality, Morbidity (deep vein thrombosis, pulmonary embolism), Volume of blood transfused	
	<i>TBI patients</i> : All-cause mortality, Morbidity (deep vein thrombosis, pulmonary embolism)	

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): High

Description: No or one non-critical weakness – the systematic review provides an accurate and comprehensive summary of the results of the available studies that address the question of interest.

The authors planned to investigate the presence of reporting (publication) bias using funnel plots, however there were too few included studies to enable meaningful analysis. Authors only stated conflict of interest and declared funding source for the systematic review.

RESULTS:

	1		1	1
Outcome	TXA	Νο ΤΧΑ	Risk estimate	Statistical significance
No. patients (No. trials)	n/N (%)	n/N (%)	(95% CI)	<i>p</i> -value
	Mean ± SD (n)	Mean ± SD (n)		Heterogeneity
				l² (p-value)
TXA versus placebo				·
Mortality, all cause	1475/10180	1631/10187	RR 0.90 (0.85, 0.97)	Favours TXA
All trauma				p = 0.003
N = 20367 (2 trials)				No significant
CRASH-2 2010	1463/10060	1613/10067	0.91 (0.85, 0.97)	heterogeneity
Yutthakasemsunt 2013	12/120	18/120	0.67 (0.34, 1.32)	l ² = 0% (p = 0.38)
Mortality, all cause	26/253	42/257	RR 0.63 (0.40, 0.99)	Favours TXA
TBI subgroup				p = 0.047
N = 510 (2 trials)				No significant
CRASH-2 2010	14/133	24/137	0.60 (0.33, 1.11)	heterogeneity
Yutthakasemsunt 2013	12/120	18/120	0.67 (0.34, 1.32)	l ² = 0% (p = 0.82)
Myocardial infarction	351/10180	58/10187	RR 0.61 (0.40, 0.92)	No significant difference
All trauma				p = 0.019
N = 20367 (2 trials)				No significant
CRASH-2 2010	35/10060	55/10067	0.64 (0.42, 0.97)	heterogeneity
Yutthakasemsunt 2013	0/120	3/120	0.14 (0.01, 2.74)	l ² = 0% (p = 0.32)
Stroke	0/253	1/257	RR 0.34 (0.01, 8.35)	No significant difference
TBI subgroup				p = 0.51
N = 510 (2 trials)				Heterogeneity NA
CRASH-2 2010	0/133	1/137	0.34 (0.01, 8.35)	

STUDY DETAILS: Ker 20	015					
Yutthakasemsunt 2013	0/120	0/120	Not estimable			
Deep vein thrombosis	40/10180	42/10187	RR 0.95 (0.62, 1.47)	No significant difference		
All trauma				p = 0.83		
N = 20 367 (2 trials)				No significant		
CRASH-2 2010	40/10060	41/10067	0.98 (0.63, 1.51)	heterogeneity		
Yutthakasemsunt 2013	0/120	1/120	0.33 (0.01, 8.10)	l ² = 0% (p = 0.51)		
Deep vein thrombosis	0/ 253	3/257	RR 0.25 (0.03, 2.26)	No significant difference		
TBI subgroup				p = 0.22		
N = 510 (2 trials)	0/133	2/137	0.21 (0.01, 4.25)	No significant		
CRASH-2 2010	0/120	1/120	0.33 (0.01, 8.10)	heterogeneity		
Yutthakasemsunt 2013				l ² = 0% (p = 0.83)		
Pulmonary embolism	72/10180	71/10187	RR 1.01 (0.73, 1.41)	No significant difference		
All trauma				p = 0.93		
N = 20 367 (2 trials)				Heterogeneity NA		
CRASH-2 2010	72/10060	71/10067	1.01 (0.73, 1.41)			
Yutthakasemsunt 2013	0/120	0/120	Not estimable			
Pulmonary embolism	0/253	0/257	Not estimable	Not estimable		
TBI subgroup						
N = 510 (2 trials)						
CRASH-2 2010	0/133	0/137				
Yutthakasemsunt 2013	0/120	0/120				
Volume of blood	3.05 ± 7.7	3.22 ± 8.02	MD -0.17 (-0.39,	No significant difference		
transfused, mean	(n = 10060)	(n = 10067)	0.05)	p = 0.13		
All trauma				Heterogeneity NA		
N = 20 127 (1 trial)						
CRASH-2 2010						
Aprotinin versus placebo						
Mortality, all cause	0/35	3/35	0.14 (0.01, 2.67)	No significant difference		
All trauma				p = 0.19		
N = 70 (1 trial)				Heterogeneity NA		
McMichan 1982						
Volume of blood	1.2 ± 0.8 (n = 35)	1.6 ± 1.3	MD -0.40 (-0.9,	No significant difference		
transfused, mean		(n = 35)	O.11)	p = 0.12		
All trauma				Heterogeneity NA		
N = 70 (1 trial)						
McMichan 1982						
EXTERNAL VALIDITY						
Generalisability (relevanc	e of the study popu	lation to the Guidelin	nes target populatio	n)		
The evidence is not directly	y generalisable to the	e target population bu	ut could be sensibly a	pplied.		
The study population is bro	pader than the intend	ded Guidelines popul	ation. CRASH-2 2010 a	also includes patients <i>at risk</i>		
of significant bleeding. Yutthakasemsunt, 2013 includes patient with moderate traumatic brain injury.						
Applicability (relevance of the evidence to the Australian health care system)						
The evidence is probably a	pplicable to the Aust	ralian healthcare con	text with some cavea	ts		
CRASH-2 2010 include countries with a similar health care system as Australia but also include low and middle-						
Income countries.						
Additional comments						
List of included studies (po	itients with critical b	leeding)				
CRASH-2 2010, Yutthakasemsunt 2013, McMichan, 1982						

CI, confidence interval; ITT, intention-to-treat; MD, mean difference; PP, per-protocol; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Cannon 2017

Citation

Cannon, J. W., Khan, M. A., Raja, A. S., Cohen, M. J., Como, J. J., Cotton, B. A., Dubose, J. J., Fox, E. E., Inaba, K., Rodriguez, C. J., Holcomb, J. B. & Duchesne, J. C. 2017. Damage control resuscitation in patients with severe traumatic hemorrhage: A practice management guideline from the Eastern Association for the Surgery of Trauma. *Journal of Trauma and Acute Care Surgery*, 82(3), 605-617. doi: 10.1097/TA.000000000001333.

Affiliation/Source of funds

The authors declared no conflicts of interest.

Author BA Cotton is a consultant, Haemonetics Corporation. Remaining authors have no affiliations to disclose. Source of funding not disclosed.

Study design	Level of evidence	Location	Setting		
Systematic review and	1/11	Shakur 2010: Over 40	Trauma		
meta-analysis of RCTs and		countries	Shakur 2010: Civilian		
cohort studies (prospective		Morrison 2012: Afghanistan	Morrison 2012: Military		
and retrospective)		Morrison 2013: Afghanistan	Morrison 2013: Military		
		Cole 2015: Not reported	Cole 2015: Civilian		
Intervention		Comparator			
PICO 1: MT/DCR		PICO 1: No MT/DCR	PICO 1: No MT/DCR		
PICO 2: High ratio of FFP and	PLT to RBCs	PICO 2: Low ratio of FFP and PLT to RBCs			
PICO 3: rFVIIa		PICO 3: No rFVIIa			
PICO 4: TXA (dose and route	of delivery not specified)	PICO 4: No TXA (further details not provided)			
Data for TXA detailed below.					
Data for other interventions	extracted elsewhere				
(see Q2, Q3 and Q5).					
Population characteristics					
Patients with severe trauma and/or with an injury score g	at risk of death from haemor reater than 25	rhage, defined as patients requi	ring blood transfusion		
PICO 4:					

Shakur 2010: RCT in adult trauma patients; 68% with blunt mechanism of injury, 18% with Glasgow Coma Score of \leq 8, defined by review authors as 'questionably bleeding' (p613)

Morrison 2012: retrospective cohort study in adult trauma patients injured during military combat, 30% injured by gunshot wound, 70% injured by explosion, 29% with Glasgow Coma Score of ≤ 8

Morrison 2013: prospective cohort study in adult trauma patients injured during military combat

Cole 2015: Severely injured adult trauma patients

Length of follow-up	Outcomes measured
Databases searched: PubMed, Medline, Embase	Mortality (in-hospital, 28 day or 30 day)
Search dates: Jan 1985 through December 2015	Red blood cells administered (RBC) via IV in 24, 48 or 72
Identified Citations were published between Jun 2010	hours
and Feb 2015.	Need for massive transfusion
No information was provided on length of follow-up post	Venous thromboembolism; deep vein thrombosis or
TXA intervention.	pulmonary embolism

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Moderate

Description: More than one non-critical weakness – the systematic review has more than one weakness but no critical flaws. It may provide an accurate summary of the results of the available studies that were included in the review. *Risk of bias of included studies*:

The authors did not provide a full list of excluded studies or details relating to risk of bias assessments, but GRADE profiles were presented. Information regarding individual studies were limited.

STUDY DETAILS: Cannon 2017					
RESULTS:					
Outcome	ТХА	No TXA	Risk estimate (95%	Statistical significance	
No. patients	n/N (%)	n/N (%)	CI)	<i>p</i> -value	
(No. trials)	Mean ± SD (n)	Mean ± SD (n)		Heterogeneity ^a	
				l²(p-value)	
TXA versus no TXA					
Mortality	1550/10616 (14.6%)	1828/11050 (16.5%)	RR 0.70 (0.54, 1.20)	No significant difference	
N = 21666			RD 0.027	p = 0.29	
(1 RCT, 2 Coh)			OR 0.81 (0.54, 1.20)	Substantial heterogeneity	
				l² = 82% (p < 0.04)	
CRASH-2 2010	1463/10050	1613/10067	OR 0.89 (0.83, 0.96)	p = 0.004	
Cole 2015	30/160	36/225	OR 1.21 (0.71, 2.07)	p = 0.48	
Morrison 2013	57/406	179/758	OR 0.53 (0.38, 0.73)	p = 0.0001	
RBC units	N = 5633	N = 6311	MD 2.14 (-0.36, 4.63)	No significant difference	
N = 11944				p = 0.09	
(1 RCT, 2 Coh)				Substantial heterogeneity	
				l² = 96% (p < 0.00001)	
CRASH-2 2010	6.06 ± 9.98 (5067)	6.29 ± 10.31 (5160)	-0.23 (-0.62, 0.16)	p = 0.25	
Cole 2015	7 ± 7.4 (160)	2 ± 5 (225)	5.00 (3.68, 6.32)	p < 0.00001	
Morrison 2013 Cryo+	22 ± 13.2 (258)	20.1 ± 16 (168)	1.90 (–1.01, 4.81)		
Morrison 2013 Cryo-	8 ± 6.2 (148)	6 ± 0.8 (758)	2.00 (1.00, 3.00)		
Morrison 2013 total			1.99 (1.04, 2.94)	p < 0.0001	
Massive transfusion				Favours control *	
N = 1164 (1 Coh)				p = < 0.00001	
Morrison 2013	272/406	111/758	OR 11.83 (8.86, 15.79)	Heterogeneity NA	
				* TXA was part of MT protocol	
VTE	191/10513	213/10895	OR 2.00 (0.53, 7.50)	No significant difference	
N = 21408 (1 RCT, 2 Coh)			RD 0.019	p = 0.30	
				Substantial heterogeneity	
Shakur 2010	168/10060	201/10067	0.83 (0.68, 1.03)	l² = 88% (p = 0.0003)	
Cole 2015	8/160	3/603	1.26 (0.48, 3.35)		
Morrison 2012	15/293	9/225	10.79 (3.10, 37.58)		
	1	1	1	1	

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is not directly generalisable to the Australian population but could be sensibly applied. The study populations in Morrison 2012 and Morrison 2013 have been treated for injuries caused by gunshot and explosion (30% gunshot and 70% explosion), which may not be directly relevant to the types of injuries typically encountered in Australian health care system.

Details regarding the nature of injuries in Cole 2015 were not provided in this review and injury severity for Shakur 2010 was not reported, with less than 50% of participants in this study having a blood transfusion or requiring surgery. The population in CRASH-2 is therefore questionable. The majority of pooled results were derived from Shakur 2010, overall generalisability should be interpreted with caution.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats.

The applicability of results from Morrison 2012 and Morrison 2013 should be interpreted with caution, as both studies were conducted in a combat zone in Afghanistan. The majority of pooled results are derived from Shakur 2010, with many countries not being able to provide early access to blood products. These details are similarly not provided for Cole 2015.

Additional comments

Authors conclusions:

STUDY DETAILS: Cannon 2017

TXA administration has no clear benefit in relation to reducing mortality in severely injured, bleeding adult trauma patients. Links between TXA intervention and VTE rates need to be assessed in more detail before any association can be confirmed.

However, based on their qualitative analysis of the included studies, they contend that TXA intervention could have 'modest benefits' with regards to reducing mortality in the most severely injured patients with clear evidence of bleeding. They therefore conditionally recommend TXA use when managing these patients in hospital settings and suggest administration within 3 hours post injury.

List of relevant included studies:

RCTs: Shakur 2010

Prospective cohorts: Cole 2015, Morrison 2012, Morrison 2013

Cl, confidence interval; Coh, cohort; ITT, intention-to-treat; MD, mean difference; NR, not reported; PP, per-protocol; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation; TBI, traumatic brain injury; TXA, tranexamic acid

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet
 > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Huebner 2017

Citation

Huebner B.R., Dorlac, W.C., Cribari, C. 2017. Tranexamic acid use in prehospital uncontrolled haemorrhage. *Wilderness & Environmental Medicine*, 28, S50-S60. doi: 10.1016/j.wem.2016.12.006

Affiliation/Source of funds

No financial or material support was provided.

Authorship: conception and design or to analysis and interpretation of data (BRH, WCD, CC);(2) drafting the article or revising it critically for important intellectual content (BRH,WCD); and (3) final approval of the version to be published (BRH, WCD,CC).

Study design	Level of evidence	Location	Setting
Narrative review	1 / IV	Various including MC study multiple countries and SC studies in UK, US, Afghanistan	Trauma
Intervention		Comparator	
<i>CRASH-2</i> ; 1 g bolus of TXA fol hrs	lowed by a 1 g infusion over 8	Matching placebo in all studies	
Morrison 2012 (MATTERs): No	t specified		
Wafaisade 2016: Not specifie	d		
<i>Swendsen 2013</i> : 1 g loading dose of TXA followed by a 1 g infusion over 8 hrs			
Valle 2014: 1 g bolus followed	by 1 g infusion over 8 hrs		
<i>Harvin 2015</i> : 1 g bolus followed by 1 g infusion of TXA over 8 hrs			
<i>Cole 2015</i> : 1 g administered w infusion over 8 hrs	/ithin 3 hrs followed by 1 g		
Eckert 2014: Not specified			
Population characteristics			

Early and prehospital use of tranexamic acid in the treatment of haemorrhaging trauma patients.

CRASH-2 – adult patients with significant traumatic haemorrhage (SBP <90 mm Hg or HR > 110 beats/min, or both) or at risk of significant haemorrhage admitted within 8 hours of injury

MATTERs – retrospective study, patients requiring at least 1 unit of transfusion within 24 hours of combat-related injury

Wafaisade 2016 – German Air Rescue Service trauma registry, prehospital administration in patients with potentially life-threatening injuries or evidence of critical illness, which could include respiratory and cardiac arrest

Valle 2014 – consecutive patients requiring emergency surgery and/or receiving transfusion admitted to Jackson Memorial Hospital matched to historical controls

Cole 2015 – prospective study, adult trauma patients (SB*P* < 90 mm Hg, poor response to fluids, suspected active haemorrhage) who arrived at UK urban trauma centre before and after implementation of inclusion of TXA in trauma protocol

STUDY DETAILS: Huebner 2017

Swendsen 2013 – retrospective study, adult trauma patients who arrived at U California Davis within 3 hours of injury with an SBP < 90 mm Hg, activation of MTP at ED or taken directly to operating theatre matched to historical controls *Harvin 2015* – retrospective study or adult trauma patients admitted with hyperfibrinolysis (LY30 >3% measured by TEG), before and after implementation of inclusion of TXA in trauma protocol (Houston)

Eckert 2014 – paediatric trauma patients in Afghanistan with predominantly penetrating injury (mean age 11 years)

Length of follow-up	Outcomes measured
PubMed search. All published data on TXA and trauma.	All-cause mortality, hospital mortality, risk of death due to bleeding, vascular occlusive events, blood product
Additional trials currently underway relating to the use of TXA in early and prehospital settings were found on clinicaltrials.gov	transfusion, mean time to death, thromboembolic events, RBC required in operating room.

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Critically low

Description: More than one critical flaw with or without non-critical weaknesses – the review has more than one critical flaw and should not be relied on to provide an accurate and comprehensive summary of the available studies. *Risk of bias of included studies:*

The authors did not provide any specific search methods, no reference was made to excluded studies, and the risk of bias of included studies was not formally assessed.

RESULTS:

Outcome	ТХА	Placebo	Risk estimate	Statistical
No. patients	n/N (%)	n/N (%)	(95% CI)	significance
(No. trials)	Mean ± SD	Mean ± SD		p-value
				Heterogeneity *
				l² (p-value)
TXA vs. no TXA	T			1
Mortality, all cause				
within 4 weeks of injury				
N = 20 211				Favours TXA
CRASH-2	NR/NR (14.5%)	NR/NR (16.0%)	RR 0.91 (0.85, 0.97)	p = 0.0035
within 48 hours				
N = 896				Favours TXA
MATTERs	NR/NR (NR)	NR/NR (NR)	RD 6.6% (NR)	p = 0.004
within 24 hours				
N = 5765				Favours TXA
Wafaisade 2016	NR/NR (5.8%)	NR/NR (12.8%)	NR	p = 0.01
N = 1032				Favours placebo
Harvin 2015, adjusted	NR/98 (NR)	NR/924 (NR)	OR 1.92 (1.05, 3.25)	p = 0.035
timing not specified				
N = 126				Favours TXA
Swendsen 2013	NR/NR (5.8%)	NR/NR (17.6%)	NR	p = 0.05
re-analysis (N = NR)	NR/NR (4.3%)	NR/NR (19.1%)	NR	p = 0.03
N = 300 ^b				
Valle 2014	NR/NR (27%)	NR/NR (17%)	NR	Favours placebo
				p = 0.024
N = NR				
Cole 2015	NR/NR (NR)	NR/NR (NR)	OR 0.16 (0.03, 0.86)	Favours TXA
(patients in shock)				

STUDY DETAILS: Hue	oner 2017			
				p = 0.03
N = 766				
Eckart 2014	NR/NR (15%)	NR/NR (9%)	OR 0.27 (0.85, 0.89)	
*adjusted for confounders				Favours TXA
				p = 0.03
In-hospital mortality				
N = 896				Favours TXA
MATTERs	NR/NR (NR)	NR/NR (NR)	RD 6.5% (NR)	p = 0.03
massive transfusion	NR/NR (14.4%)	NR/NR (28.1%)	RD 13.7% (NR)	p = 0.04
subgroup (N = NR)			RR 0.49 (NR)	
Mofeire de 2016				No significant
	NR/NR (14.7%)	NR/NR (16.3%)	NR	allerence
IN - 1032				NR Ne significant
Harvin 2015, adjusted	NR/98 (NR)	NR/924 (NR)	NR	difference
				NR
Risk of death due to	NR/NR (49%)	NR/NR (5.7%)	RR 0.85 (0.76, 0.96)	Favours TXA
bleeding				NR
N = 20 211 (1 trial)				
CRASH-2				
Time to death, days	Mean ± SD	Mean ± SD	MD	Favours TXA
N = 5765 (1study)	8.8 ± 13.4	3.6 ± 4.9	NR	p = 0.001
Wafaisade 2016				
Vascular occlusive	NR/NR (1.7%)	NR/NR (2.0%)	NR	No significant
events				difference
N = 20 211 (1 trial)				NR
CRASH-2				
Thromboembolic	NR/NR (8%)	NR/NR (2%)	NR	Favours placebo
events				p = 0.01
N = NR (1 trials)				
Cole 2015				
DVT/PE				Favours placebo
N = 126 (1 trial)				
Swendsen 2013	NR/NR (11.5%)	NR/NR (0%)	NR	p = 0.004
Swendsen 2013, re-	NR/NR (12%)	NR/NR (0%)	NR	p = 0.012
				No cignificant
Blood product	NR/NR (50.4%)	NR/NR (51.3%)		No significant difference
N = 20211 (1 trial)				n = 0.21
CRASH-2				
Total volume of RBC	2250	1500	NR	Favours placebo
required in operating				p = 0.002
room, mL				,
N = 300 (1 study) ^b				
Valle 2014				
Total volume fluid	2675	2250	NR	Favours placebo
received in ED, mL				p = 0.025
N = 300 (1 study) ^b				
Valle 2014				
Total volume FFP in	1750	1125	NR	Favours placebo
operating room, mL				p = 0.009

STUDY DETAILS: Huebner 2017

N = 300 (1 study) ^b						
Valle 2014						
CRASH-2 sub-analysis – timing of TXA administration vs. no TXA						
Mortality due to bleeding						
N = NR (1 trial)	NR/NR (5.3%)	NR/NR (7.7%)	RR 0.68 (0.57, 0.82)	p < 0.0001 Favours TXA		
within 1 hour	NR/NR (4.8%)	NR/NR (6.1%)	RR 0.79 (0.64, 0.97)	p = 0.03 Favours TXA		
between 1 & 3 hours	NR/NR (4.4%)	NR/NR (3.1%)	RR 1.44 (1.12, 1.84)	NR Favours placebo		
after 3 hours						

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population i.e. Australian patients with uncontrolled haemorrhage due to trauma (see other comments re CRASH-2)

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats (see other comments re CRASH-2)

Additional comments

Authors conclusion:

Our recommendation based on the current literature advocates the use of early bolus TXA in the prehospital setting in those patients at risk of significant uncontrolled bleeding. The benefit is most pronounced when given early after injury (<1 hour) and, combined with the extensive literature on prophylactic administration in elective surgery, may be most beneficial when given before the development of haemorrhagic shock. We recommend withholding repeat dosing until coagulation status has been determined and redosing at that time for a LY30 (rate of clot breakdown, lysis at 30 minutes) of 43% on TEC.

List of relevant included studies:

RCTs: CRASH-2 2010; CRASH-2 2011 (reanalysis - mortality due to bleeding, timing of administration)

Cohort studies: Morrison 2012 (MATTERs); Wafaisade 2016; Valle 2014; Cole 2015; Swendsen 2013; Harvin 2015; Eckert 2014

Cl, confidence interval; DVT, deep vein thrombosis; FFP, fresh frozen plasma; ITT, intention-to-treat; NR, not reported; PE, pulmonary embolism; RCT, randomised controlled trial; RD, risk difference; RR, relative risk; SD, standard deviation; TEG, thromboelastography; TXA, Tranexamic acid

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet
 > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

b. Total N not reported, calculated based on report that 150 patients who received TXA were propensity-matched to controls.

STUDY DETAILS: Nishida 2017

Citation

Nishida, T., Kinoshita, T. & Yamakawa, K. 2017. Tranexamic acid and trauma-induced coagulopathy. *Journal of Intensive Care*, 5(5). doi: 10.1186/s40560-016-0201-0

Affiliation/Source of funds

The authors stated no funding has been supplied for review. (p6)

The authors declared no conflicts of interest. (p6)

Author affiliations: Division of Trauma and Surgical Critical Care, Osaka General Medical Center, 3-1-56 Bandai-Higashi, Sumiyoshi-ku, Osaka 558-8558, Japan

Study design	Level of evidence	Location	Setting	
Systematic review and meta-analysis of RCTs and observational studies.	I	Countries of origin for included studies not provided.	Hospital, trauma	
Intervention		Comparator		
TXA IV;		Placebo, no intervention		
dose, frequency and duration for individual studies not specified.				

STUDY DETAILS: Nishida 2017

Population characteristics

Patients with trauma induced coagulopathy

RCTs:

Shakur 2010: Adult trauma patients with, or at risk of, significant bleeding

Yutthakasemsunt 2013: Adult trauma patients with moderate to severe traumatic brain injury (post-resuscitation Glasgow Coma Scale 4 to 12)

Observational studies:

Morrison 2012: Patients who received at least 1 unit of PRBCs within 24 h of admission following combat-related injury *Swendsen 2013*: Adult trauma patients who met triage criteria for serious injury and at least one of the following: hypotension, massive transfusion guideline activation, or transport directly to the operating room or interventional radiology suite

Haren 2014: Adult trauma patients with hypercoagulable state defined as Greenfield's risk assessment profile (RAP) ≥10

Harvin 2014: Adult trauma patients with hyperfibrinolysis determined by rapid thromboelastography

Cole 2015: Adult trauma patients with severe injury defined as injury severity score (ISS) >15

Wafaisade 2015: Trauma patients with/without prehospital TXA administration

Length of follow-up	Outcomes measured
Citations published between Jun 2010 and May 2016.	Venous thromboembolism (including deep vein
No information was provided on follow up post TXA	thrombosis and pulmonary embolism)
intervention.	
INTERNAL VALIDITY	

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Moderate

Description: More than one critical flaw with non-critical weaknesses – the review has more than one critical flaw and *should not be relied on* to provide an accurate and comprehensive summary of the available studies.

The authors provide insufficient details regarding: pre-specified methods, study inclusion criteria, duplicate study selection and data extraction, risk of bias analysis, individual study characteristics, or heterogeneity analysis. No mention was made of excluded or ongoing studies, funding sources for the included studies, or potential for publication bias. Although separate summary estimates were provided for RCTs and observational studies, pooled outcomes were not adjusted for heterogeneity.

Risk of bias of included studies: The authors did not include an appropriately detailed risk of bias analysis for the included studies. However, they do acknowledge that there is serious risk of bias due to the observational nature of six of the eight included studies, in addition to their unadjusted pooled data. The authors were also concerned by a lack of detail from some of the observational studies, regarding diagnosis, protocols or treatment for venous thromboembolisms; the primary outcome in question. They therefore contend that the overall quality of the evidence is very low.

RESULTS:

Outcome No. patients (No. trials)	TXA n/N (%) Mean ± SD	Comparator n/N (%) Mean ± SD	Risk Estimate (95% CI)	Statistical significance p-value Heterogeneity ^a I ² (p-value)		
TXA versus no TXA (placebo or no intervention)						
Venous thromboembolism N = 23117 (2 RCTs, 6 Coh)	209/10881	288/12236	RR 1.32 (0.80, 2.16)	No significant difference p = 0.28 Substantial heterogeneity $l^2 = 61\%$ ($p = 0.02$)		
Venous thromboembolism N = 20365 (2 RCTs) Shakur 2010 Yutthakasemsunt 2013	168/10180 168/10060 0/120	201/10185 201/10067 0/118	RR 0.84 (0.68, 1.02) 0.84 (0.68, 1.02) Not estimable	No significant difference p = 0.08 Heterogeneity NA (zero events in one study)		
STUDY DETAILS: Nishida 2017

Venous	41/701	87/2051	RR 1.61 (0.86, 3.01)	No significant difference
thromboembolism				p = 0.14
N = 2752 (6 Coh studies)				Substantial heterogeneity
Morrison 2012 ^b	8/293	2/603	8.23 (1.76, 38.52)	l ² = 52% (p = 0.06)
Swendsen 2013	6/52	0/74	18.40 (1.06, 319.58)	
Haren 2014	9/27	25/94	1.25 (0.67, 2.35)	
Harvin 2014	6/98	41/934	1.39 (0.61, 3.20)	
Cole 2015	8/160	9/225	1.25 (0.49, 3.17)	
Wafaisade 2015 ^b	4/71	10/121	0.68 (0.22, 2.09)	

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is not directly generalisable to the Australian population but could be sensibly applied.

The individual study populations were broader than the intended Guidelines population. Shakur 2010 included patients who were *at risk* of significant bleeding, while Yutthakasemsunt 2013 included patients with traumatic brain injury. Moreover, Swendsen 2013 included a combination of serious injury and hypotension as one of their patient inclusion criteria. Insufficient information was also provided regarding the presence of critical bleeding in patient entry criteria for Haren 2014, Cole 2015 and Wafaisade 2016.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats.

Information on individual study countries of origin is not provided in this review. The majority of evidence is from Shakur 2010 (CRASH-2) which was conducted in over 40 countries.

Additional comments

Authors conclusions

The authors concluded that TXA can potentially be associated with an increased risk of venous thromboembolisms. They contended that it should therefore be used with caution. However, they stated that more research is necessary in order to confirm these associations, and to determine how to both maximise survival and minimise risk of thrombotic complications for patients.

List of included studies

Shakur 2010, Morrison 2012, Yutthakasemsunt 2013, Swendsen 2013, Haren 2014, Harvin 2014, Cole 2015, Wafaisade 2015 CI, confidence interval; MD, mean difference; NA, not applicable; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet

> 0.1 and l^2 < 25%; (ii) mild heterogeneity if l^2 < 25%; moderate heterogeneity if l^2 between 25–50%; substantial heterogeneity l^2 > 50%. b. Numbers are for pulmonary embolism only.

STUDY DETAILS: El-Menyar 2018

Citation

El-Menyar, A., Sathian, B., Asim, M., Latifi, R. & Al-Thani, H. 2018. Efficacy of prehospital administration of tranexamic acid in trauma patients: A meta-analysis of the randomized controlled trials. *The American Journal of Emergency Medicine*, *36*(6). 1079-1087. doi: 10.1016/j.ajem.2018.03.033

Affiliation/Source of funds

The authors declared that there were no conflicts of interest or funding for this review. (p1086)

Author affiliations: Department of Surgery, Trauma Surgery, Clinical Research, Hamad General Hospital, Doha, Qatar; Clinical Medicine,Weill Cornell Medical School, Doha, Qatar; Department of Surgery, Westchester Medical Center, Valhalla, NY, USA; Department of Surgery, Trauma & Vascular Surgery, Hamad General Hospital, Doha, Qatar

Study design	Level of evidence	Location	Setting
Systematic review and meta-analysis of observational studies.	1 /11	Countries of origin for included studies not provided.	Prehospital (air rescue helicopter)
Intervention	·	Comparator	·
<i>Wafaisade 2016</i> : TXA, prehospit not specified	al, dose and delivery route	Placebo	
<i>Neeki 2017</i> : TXA, prehospital, dose and delivery route not specified			

STUDY DETAILS: El-Menyar 2018

Population characteristics

Adult traumatic injury patients presenting to the emergency department requiring blood transfusion

Wafaisade 2016: Retrospective analysis of patients who received prehospital TXA compared to a propensity-scorebased matched control. No further information provided.

Neeki 2017: adult patients with blunt or penetrating trauma resulting in signs and symptoms of haemorrhagic shock; systolic blood pressure >90 mm Hg at scene of injury, during air and/or ground medical transport, or upon arrival to designated trauma centres; any sustained blunt or penetrating injury in previous 3 hours; high risk for significant haemorrhage (estimated blood loss of 500 mL at scene accompanied with a heart rate >120; uncontrolled bleeding by direct pressure or tourniquet, major amputation of any extremity above the wrists and above the ankles)

Length of follow-up	Outcomes measured
Citations published between May 2016 and Jun 2017	24 hour mortality, 30 day mortality, thromboembolic
Follow-up dictated by outcomes: 24 hours and 30 days post injury for mortality; length of hospital stay for morbidity.	events

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Moderate

Description: More than one non-critical weakness – the systematic review has more than one weakness but no critical flaws. It may provide an accurate summary of the results of the available studies that were included in the review.

An appropriate analysis of publication bias was not conducted, and baseline population characteristics for the two studies were also insufficiently outlined. Details were also not provided regarding duplicate study selection or sources of funding for the included studies.

Risk of bias of included studies: The overall risk of bias for the included studies was judged by the review authors to be low or unclear, with overall quality of the evidence being moderate. They suggested that any plausible bias was unlikely to significantly impact evidence quality. Notwithstanding this, the authors mention that demonstrated effects of the studies could be reduced due to confounding (plausible confounding factors not specified).

RESULTS:				
Outcome No. patients	Prehospital TXA n/N (%)	Placebo n/N (%)	Risk estimate (95% CI)	Statistical significance p-value
(No. trials)	Mean ± SD	Mean ± SD		Heterogeneityª I² (p-value)
Prehospital TXA ver	rsus placebo	'	· · · · · · · · · · · · · · · · · · ·	
24-hour mortality N = 769 (2 Coh studies) Wafaisade 2016 Neeki 2017	20/386	41/383	OR 0.49 (0.27, 0.84) 0.47 (0.25, 0.89) 0.54 (0.18, 1.66)	Favours TXA NR No significant heterogeneity I ² = 0% (p = 0.82)
30-day mortality N = 769 (2 Coh studies) Wafaisade 2016 Neeki 2017	44/386	55/383	OR 0.86 (0.56, 1.32) 0.86 (0.53, 1.38) 0.87 (0.32, 2.32)	No significant difference NR No significant heterogeneity $l^2 = 0\% (p = 0.98)$
Thromboembolic events N = 769 (2 Coh studies) Wafaisade 2016 Neeki 2017	6/386	12/383	OR 0.74 (0.27, 2.07) 0.67 (0.20, 2.22) 0.98 (0.14, 7.04)	No significant difference NR No significant heterogeneity $l^2 = 0\% (p = 0.75)$
EXTERNAL VALID	İTY	1	1	1
				•

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population with some caveats.

Insufficient details were provided regarding bleeding and injury status of the population in Wafaisade 2016. The patient population in Neeki 2016 appropriately represent the Guidelines target population.

STUDY DETAILS: El-Menyar 2018

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats.

Information on individual study countries of origin is not provided in this review. It is therefore difficult to comment on applicability.

Additional comments

Authors conclusions

The authors concluded that there was evidence linking prehospital TXA administration to a significant reduction in 24 hour mortality for adult trauma patients. Their pooled analysis also indicated that prehospital TXA intervention can reduce 30 day mortality, along with the risk of thromboembolic events in this population group.

However, they acknowledge that data for the latter two outcomes was not statistically significant. Furthermore, several limitations were identified for the included studies, including a lack of information on the timing and dosages of TXA administration, in addition to causes of death. The authors also point out the potential for publication bias due to a lack of grey literature. Results of the review should therefore be interpreted with caution. They therefore suggest further research via randomised controlled trials.

List of included studies

Wafaisade 2016, Neeki 2017

Cl, confidence interval; Coh, cohort; ITT, intention-to-treat; MD, mean difference; NR, not reported; PP, per-protocol; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation; TBI, traumatic brain injury; TXA, tranexamic acid

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet
 > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Gayet-Ageron 2018

Citation

Gayet-Ageron, A., Prieto-Merino, D., Ker, K., Shakur, H., Ageron, F., Roberts, I. 2018. Effect of treatment delay on the effectiveness and safety of antifibrinolytics in acute severe haemorrhage: a meta-analysis of individual patient-level data from 40 138 bleeding patients. *Lancet, 391*(10116), 125-132

Affiliation/Source of funds

Author affiliations: Clinical Trials Unit, LSHTM, London, UK; Division of Clinical Epidemiology, University Hospitals of Geneva, Geneva, Switzerland. (p3, protocol)

Conflicts of interest: research grant funding from NIHR, MRC, Wellcome and the Department of Health; donations to cover cost of TXA received from pharmaceutical companies (not specified). (p3, protocol)

Funding source: London School of Hygiene and Tropical Medicine, London, UK. (p3)

Study design	Level of evidence	Location	Setting	
Individual patient-level meta-analysis of randomised controlled trials.	l	Countries of origin not provided (both are large international multicentre trials)	Hospital; trauma	
Intervention		Comparator		
CRASH-2: loading dose of 1 g TXA administered as soon		Placebo		
possible, followed by a maintenance dose of 1 g TXA over eight hours				
WOMAN: 1 g TXA via IV given as soon as possible post				
randomisation. If bleeding co	ontinued after 30 minutes, or			
stopped and restarted within second dose could be given.	a 24 hours after first dose, a			
Population characteristics				

Patients with acute severe bleeding

CRASH-2: adult (> 16 years) trauma patients with, or at risk of, significant bleeding; mean age of 34.6 years (SD 14.3); mean time from injury to treatment of 2.8 hours (SD 2.1); mean systolic blood pressure of 97 mm Hg (SD 27.9). *WOMAN:* women with clinically diagnosed post-partum haemorrhage following vaginal delivery of a baby or caesarean section; mean age of 28.5 years (SD 5.7); mean time from injury to treatment of 2.8=5 hours (SD 3.4); mean systolic blood pressure of 100.8 mm Hg (SD 22.7).

STUDY DETAILS: Gayet-Ageron 2018			
Length of follow-up	Outcomes measured		
Citations published between Jun 2010 and Apr 2017	Primary: absence of mortality due to bleeding		
	Secondary: mortality due to vascular occlusive event, myocardial infarction, stroke, pulmonary embolism, deep vein thrombosis		
	The authors conducted logistic regression model		
	assessing:		
	 overall treatment effect and homogeneity across trials 		
	2. non-linear effect of TXA by treatment delay and interaction with trial		
	3. non-linear effect of TXA by treatment delay (assuming interaction in the same in both trials)		
	All models were controlled for systolic blood pressure (5 mm Hg interval) and age (10-yr intervals), which are strong risk factors for death due to bleeding.		

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): High

Description: No or one non-critical weakness – the systematic review provides an accurate and comprehensive summary of the results of the available studies that address the question of interest.

The authors did not provide a list of excluded studies, nor did they assess for publication bias.

Risk of bias of included studies: The overall risk of bias for the included studies was judged by the review authors to be low. There were no concerns raised with regard to sequence generation, allocation concealment, blinding, outcome data collection or outcome data reporting for the two trials.

Notwithstanding, the authors acknowledged that certain factors within the studies *may* have impacted results, especially regarding effect of treatment delay on TXA benefit. Specifically, they suggest potential for treatment delay underestimation in trauma patients and overestimation in postpartum haemorrhage patients, respectively. The use of multiple sensitivity analyses is believed to have accounted for these factors. They also recognised the possibility for misclassification of deaths due to bleeding and vascular occlusive events. Despite this, the authors believe that the large sample sizes allow for an accurate assessment of treatment delay effects and overall outcomes.

RESULTS:

Outcome No patients	TXA	placebo p/N (%)	Risk estimate (95% CI)	Statistical significance
(No trials)				
	Mean ± SD	Mean ± SD		Heterogeneity *
				l² (p-value)
TXA versus placebo				
Mortality, all cause	1690/20094	1868/20044	RR 0.90 (0.85, 0.96) ^b	Favours intervention
N = 40138				р = 0.001 ^ь
(2 studies)				No significant
CRASH-2	1463/10060	1613/10067	RR 0.91 (0.85, 0.97)	heterogeneity
WOMAN	227/10034	255/9977	RR 0.89 (0.74, 1.06)	l ² = 0% (p = 0.79)
Mortality, due to	644/20094	764/20044	RR 0.84 (0.76, 0.93) ^b	Favours intervention
bleeding				р = 0.001 ^ь
N = 40138				No significant
(2 studies)				heterogeneity
CRASH-2	489/10060	574/10067	RR 0.85 (0.76, 0.96)	l ² = 0% (p = 0.69)
WOMAN	155/10034	190/9977	RR 0.81 (0.66, 1.00)	
Mortality, not due to	1046/20094	1104/20044	RR 0.95 (0.87, 1.03) ^b	No significant difference
bleeding				р = 0.18 ^в
N = 40138				No significant
(2 studies)				heterogeneity
CRASH-2	974/10060	1039/10067	RR 0.94 (0.86, 1.02)	l ² = 0% (p = 0.36)

STUDY DETAILS: Gayet-Ageron 2018				
72/10034	65/9977	RR 1.10 (0.79, 1.54)		
43/20094 (0.2%)	59/20044 (0.3%)	OR 0.73 (0.49, 1.09)	No significant difference p = 0.1204 No significant	
			heterogeneity $l^2 = NR (\rho = 0.5956)$	
33/10060 (0.3%)	48/10067 (0.5%)	0.69 (0.44, 1.08)		
10/10034 (0.1%)	11/9977 (0.1%)	0.90 (0.38, 2.12)		
37/20094 (0.2%) 35/10060 (0.3%)	58/20044 (0.3%) 55/10067 (0.5%)	OR 0.64 (0.43, 0.97) 0.64 (0.42, 0.98)	Favours intervention p = 0.0371 No significant heterogeneity $l^2 = NR (p = 0.9788)$	
2/10034 (0.0%)	3/9977 (0.0%)	0.66 (0.11, 3.95)		
65/20094 (0.3%)	72/20044 (0.4%)	OR 0.91 (0.65, 1.27)	No significant difference <i>NR</i> No significant heterogeneity	
57/10060 (0.6%)	66/10067	0.87 (0.61, 1.24)	Ι ² = NR (<i>p</i> = 0.4647)	
8/10034 (0.1%)	6/9977 (0.1%)	1.32 (0.46, 3.81)		
89/20094 (0.4%)	91/20044 (0.5%)	OR 0·98 (0·73, 1·32)	No significant difference <i>NR</i> No significant heterogeneity	
72/10060 (0.7%) 17/10034 (0.2%)	71/10067 (0.7%) 20/9977 (0.2%)	1·02 (0·74, 1·42) 0·84 (0·44, 1·61)	l² = NR (ρ = 0.6025)	
43/20094 (0.2%)	48/20044 (0.2%) 41/10067 (0.4%)	OR 0.90 (0.60, 1.36)	No significant difference <i>NR</i> No significant heterogeneity I ² = NR (<i>p</i> = 0.2483)	
3/10034 (0.0%)	7/9977 (0.1%)	0.42 (0.11, 1.64)		
18404 (96.6%)	18176 (96.0%)	OR 1·20 (1·08, 1·34)	Favours intervention p = 0.001 No significant heterogeneity	
8597 (94.6%) 9807 (98.4)	8454 (93.6%) 9722 (98.1%)	1·19 (1·05, 1·35) 1·24 (0·99, 1·53)	(Model 1: interaction p = 0.7243)	
n/20040 (Excluded: 4 missing time to treatment in CRASH-2, 50 with time to treatment > 24 hours in WOMAN) 94 (1.7%) 192 (3.9%)	n/19981 (Excluded: 4 missing time to treatment in CRASH-2, 59 with time to treatment > 24 hours in WOMAN) 115 (2.2%) 283 (5.8%)	OR 1.26 (0.96, 1.66) OR 1.53 (1.27, 1.84) OR 1.42 (1.09, 1.83) OR 1.08 (0.76, 1.54)	No significant heterogeneity (Model 2: interaction p = 0.1363 with linear terms; p = 0.3891 with squared terms)	
	ayet-Ageron 2018 72/10034 43/20094 (0.2%) 33/10060 (0.3%) 10/10034 (0.1%) 37/20094 (0.2%) 35/10060 (0.3%) 2/10034 (0.0%) 65/20094 (0.3%) 2/10034 (0.0%) 89/20094 (0.4%) 89/20094 (0.2%) 43/20094 (0.2%) 43/20094 (0.2%) 43/20094 (0.2%) 18404 (96.6%) 8597 (94.6%) 9807 (98.4) n/20040 (Excluded: 4 missing time to treatment in CRASH-2, 50 with time to treatment > 24 hours in WOMAN) 94 (1.7%) 192 (3.9%)	ayer-Ageron 2018 72/ 10034 65/9977 43/20094 (0.2%) 59/20044 (0.3%) 33/10060 (0.3%) 48/10067 (0.5%) 10/10034 (0.1%) 11/9977 (0.1%) 37/20094 (0.2%) 58/20044 (0.3%) 35/10060 (0.3%) 55/10067 (0.5%) 2/10034 (0.0%) 55/10067 (0.5%) 2/10034 (0.0%) 72/20044 (0.4%) 65/20094 (0.3%) 72/20044 (0.4%) 57/10060 (0.6%) 66/10067 8/10034 (0.1%) 6/9977 (0.1%) 89/20094 (0.4%) 91/20044 (0.5%) 72/10060 (0.7%) 71/10067 (0.7%) 17/10034 (0.2%) 48/20044 (0.2%) 43/20094 (0.2%) 48/20044 (0.2%) 43/20094 (0.2%) 41/10067 (0.4%) 3/10034 (0.0%) 7/9977 (0.1%) 18404 (96.6%) 18176 (96.0%) 8597 (94.6%) 8454 (93.6%) 9807 (98.4) 9722 (98.1%) n/20040 n/19981 (Excluded: 4 missing time to treatment in CRASH-2, 59 with CRASH-2, 50 with time to treatment > 24 hours in WOMAN) 94 (1.7%) <td>ayet Agenon 2018 72/10034 65/9977 RR 1.10 (0.79, 1.54) 43/20094 (0.2%) 59/20044 (0.3%) OR 0-73 (0-49, 1-09) 33/10060 (0.3%) 46/0067 (0.5%) 0-69 (0-44, 1-08) 10/10034 (0.1%) 11/9977 (0.1%) 0-90 (0.38, 2-12) 37/20094 (0.2%) 58/20044 (0.3%) OR 0-64 (0-43, 0-97) 35/10060 (0.3%) 55/10067 (0.5%) 0-64 (0-42, 0-98) 2/10034 (0.0%) 55/10067 (0.5%) 0-64 (0-41, 0-91) 2/10034 (0.0%) 55/10067 (0.5%) 0-64 (0-41, 0-91) 65/20094 (0.3%) 72/20044 (0.4%) OR 0-91 (0-65, 1-27) 57/10060 (0.6%) 66/10067 0-87 (0-61, 1-24) 8/0034 (0.1%) 69977 (0.1%) 1-32 (0-46, 3-81) 89/20094 (0.4%) 91/20044 (0.5%) OR 0-98 (0-73, 1-32) 72/10060 (0.7%) 71/10067 (0.7%) 1-02 (0-74, 1-42) 17/10034 (0.2%) 20/9977 (0.2%) 0-84 (0-44, 1-61) 43/20094 (0.2%) 7/10067 (0.4%) 0-98 (0-63, 1-52) 3/10034 (0.0%) 19/70 (1%) 0-84 (0-44, 1-61) 43/20094 (0.2%) 18176 (96.0%)</td>	ayet Agenon 2018 72/10034 65/9977 RR 1.10 (0.79, 1.54) 43/20094 (0.2%) 59/20044 (0.3%) OR 0-73 (0-49, 1-09) 33/10060 (0.3%) 46/0067 (0.5%) 0-69 (0-44, 1-08) 10/10034 (0.1%) 11/9977 (0.1%) 0-90 (0.38, 2-12) 37/20094 (0.2%) 58/20044 (0.3%) OR 0-64 (0-43, 0-97) 35/10060 (0.3%) 55/10067 (0.5%) 0-64 (0-42, 0-98) 2/10034 (0.0%) 55/10067 (0.5%) 0-64 (0-41, 0-91) 2/10034 (0.0%) 55/10067 (0.5%) 0-64 (0-41, 0-91) 65/20094 (0.3%) 72/20044 (0.4%) OR 0-91 (0-65, 1-27) 57/10060 (0.6%) 66/10067 0-87 (0-61, 1-24) 8/0034 (0.1%) 69977 (0.1%) 1-32 (0-46, 3-81) 89/20094 (0.4%) 91/20044 (0.5%) OR 0-98 (0-73, 1-32) 72/10060 (0.7%) 71/10067 (0.7%) 1-02 (0-74, 1-42) 17/10034 (0.2%) 20/9977 (0.2%) 0-84 (0-44, 1-61) 43/20094 (0.2%) 7/10067 (0.4%) 0-98 (0-63, 1-52) 3/10034 (0.0%) 19/70 (1%) 0-84 (0-44, 1-61) 43/20094 (0.2%) 18176 (96.0%)	

STUDY DETAILS: G	ayet-Ageron 2018			
240-300	104 (3.8%)	66 (3.5%)	OR 0.67 (0.45, 0.98)	
300-360	61 (3.2%)	47 (2.9%)	OR 0.80 (0.51, 1.27)	
360-420	64 (4.3%)	35 (3.6%)	OR 0.78 (0.48, 1.28)	
420-480	43 (4.4%)	30 (3.2%)	OR 0.70 (0.35, 1.39)	
120 100	37 (4.0%)	14 (2.1)		
	20 (3.0%)			
Effect of treatment	N = 20040	N = 19981		Nonlinear association with
delay on survival	(Excluded: 4	(Excluded: 4		increasing delay
N = 40138	missing time to	missing time to		p = 0.0109
(2 studies)	treatment in	treatment in		Favours immediate
Administration	CRASH-2, 50 with	CRASH-2, 59 with		administration
time:	24 hours in	24 hours in	OR 1.72 (1.42, 2.10)	p < 0.0001
Immediate	WOMAN)	WOMAN)	OR NR (1.00, NR)	NR
135 min			OR 1.00 (NR, NR)	p = not significant
180 min				
Effect of treatment	Sensitivity analysis:			
delay on survival	Random correction o	f up to 60 minutes		
Immediate (min)	treatment delay in CI	RASH-2	OR 1.70 (1.38, 2.11)	Favours immediate
Immediate (max)	Random subtraction	of up to 60 minutes	OR 1.82 (1.47, 2.25)	administration
Immediate	treatment delay in W	OMAN	OR 1.77 (1.43, 2.18)	
(mean)			OR 1.00 (NR)	p = not significant
200 minutes				
EXTERNAL VALIDI	ТҮ			
Conoralizability (role	···	pulation to the Cuide	lines target populati	op)
	valice of the study po			Shij
The evidence is direct	ly generalisable to the	Australian population	with some caveats	
Patients included in t	he CRASH-2 study wer	e classified as being at	risk of significant blee	eding, in addition to being
haemorrhage, however severity of diagnosis and life-threatening nature of haemorrhage for these patients was not				
specified. It is therefo	re important to note th	hat an unspecified perc	entage of the study p	opulations are likely
representative of the	Guidelines target popu	ulation, but overall gene	eralisability is uncerta	in.
Applicability (releva	nce of the evidence to	the Australian health	care system)	
The evidence is proba	ably applicable to the A	ustralian healthcare co	ontext with some cave	ats
Data from the CRASH	I-2 trial comes from 40	countries with a variet	ty of healthcare system	ns. The same can be said for
WOMAN, where data	was collected from 21	countries. It is difficult t	o comment on the di	rect applicability of the
results in the context	of Australian health ca	re.		
Additional comment	S			
Authors' conclusions:				
The authors primary f	indings were that:			
- most deaths occu	irred on the day of onse	et in patient presentati	ons covered in the inc	cluded studies, with many
deaths occurring	within the first few ho	urs.		
- TXA administratio	on reduced mortality ar	nd myocardial infarctio	n, but benefits decrea	sed with treatment delay
(approximately 10	0% decrease with every	/15 minutes of delay, w	ith no apparent treatr	ment effect observed at 180
- TXA administratio	n was not associated v	vith an increase in vasc	ular occlusive events	
The authors therefore	conclude that bleedir	ng patients should rece	ive antifibrinolvtics as	soon as possible. in order to
maximise treatment	outcomes and reduce	chance of mortality in t	hese patient populati	ions.
List of included studie	es:	-		
CRASH-2, WOMAN				
CI, confidence interval; Co	h, cohort; ITT, intention-to	-treat; MD, mean differenc	ce; NR, not reported; PP, j	per-protocol; RCT, randomised
controlled trial; RR, re	ative risk; SD, standard de	viation; TBI, traumatic bra	in injury; TXA, tranexamic	cacid
a. Only applicable to Leve	i studies with formal met	a-analysis. Heterogeneity	defined as follows: (i) no s	significant heterogeneity if Phet

> 0.1 and l² < 25%; (ii) mild heterogeneity if l² < 25%; moderate heterogeneity if l² between 25–50%; substantial heterogeneity l² > 50%.
 b. Calculated post-hoc using RevMan 5.3.

c. Denominator not reported. Numbers are those used in the model. Odds are "Survival from bleeding".

STUDY DETAILS: Shakur 2018

Citation

Shakur, H., Beaumont, D., Pavord, S., et al. 2018. Antifibrinolytic drugs for treating primary postpartum haemorrhage. *Cochrane Database of Systematic Reviews, 2018* (2) (no pagination).

Affiliation/Source of funds

Author affiliations: Clinical Trials Unit, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK. Source of funds: No sources of support supplied

Conflicts of interest: Three authors declared interests in the WOMAN trial (principal/investigator)

Study design	Level of evidence	Location	Setting
Systematic Review of RCTs	Level I	 WOMAN 2017 UK, Nigeria, Pakistan, Uganda, Kenya, Cameroon, Sudan, Tanzania, Nepal, Zambia, Albania, Democratic Republic of Congo, Bangladesh, Ethiopia, Burkina Faso, Jamaica, Ghana, Papua New Guinea, Egypt, Colombia, and Cote d'Ivoire. Ducloy-Bouthors 2011 France 	Hospital, tertiary care centres and secondary care obstetric centres.
Intervention		Comparator	
Standard care plus IV tranexamic acid for treatment of primary postpartum haemorrhage.		Placebo or standard care alc	ne

Population characteristics

Women after birth following a pregnancy of at least 24 weeks' gestation with a diagnosis of PPH, regardless of mode of birth (vaginal or caesarean section) or other aspects of third stage management.

WOMAN 2017: 20018 women aged 16 years or older with clinically diagnosed PPH (estimated blood loss after vaginal birth > 500 mL, or > 1000 mL after caesarean section or estimated blood loss enough to compromise the haemodynamic status of the woman).

Ducloy-Bouthors 2011: 151 women with PPH > 800 mL within hours after vaginal birth.

Length of follow-up	Outcomes measured
Follow-up generally not specified, but usually period of hospitalisation	Mortality (due to bleeding, all cause, other than bleeding), Serious maternal morbidity (any, renal, respiratory, cardiac, or multiple organ failure),
	Blood loss (number with >500 mL, number with >1000 mL, mean), Shock, Coagulopathy, Transfusion (number red cell or whole blood, other products),
	Post-randomisation events (uterotonics used, surgical interventions to control bleeding, non-surgical interventions to control bleeding)
	Admission to higher level care, hysterectomy,
	Maternal and neonatal side effects of intervention

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): High

Description: No or one non-critical weakness – the systematic review provides an accurate and comprehensive summary of the results of the available studies that address the question of interest. The authors planned to investigate the presence of reporting (publication) bias using funnel plots, however there were too few included studies to enable meaningful analysis. (p10)

Risk of bias of included studies: Included studies were generally at low risk of bias. Ducloy-Bouthers was at high risk of performance bias is there was no placebo, so staff would be aware of treatment allocation.

STUDY DETAILS: Shakur 2018				
RESULTS:				
Outcome	ТХА	Placebo or no TXA	Risk estimate (95%	Statistical significance
No. patients (No. trials)	n/N (%)	n/N (%)	CI)	<i>p</i> -value
	Mean ± SD	Mean ± SD		Heterogeneity ^a
				l² (p-value)
IV TXA versus placebo or s	standard care alone		1	
Mortality (maternal) due	155/10036	191/9985	0.81 (0.65, 1.00)	Favours TXA
to bleeding				p = 0.046
N = 20172 (2 trials)			/	Heterogeneity NA ^b
Duclov Routbors 2011	155/10036	191/9985	0.81 (0.65, 1.00)	
Martality (restaured) due		0/74	Notestimable	
to bleeding (timing from				No significant
N = 20011 (1 trial)				$\frac{1}{2}$
WOMAN 2017	49/4846	60/4726	0.80 (0.55, 1.16)	Pavours TA
<1hr	40/2674	67/2682	0.60 (0.41, 0.88)	p = 0.090
1–3 hrs	66/2514	63/2569	1.07 (0.76, 1.51)	difference $p = 0.70$
> 3hrs				,
Mortality, all causes	227/10036	256/9985	0.88 (0.74, 1.05)	No significant
N = 20172 (2 trials)				difference
WOMAN 2017	227/10036	256/9985	0.88 (0.74, 1.05)	p = 0.16
Ducloy-Bouthers 2011	0/77	0/74	Not estimable	Heterogeneity NA ^b
Mortality (maternal) all cause (timing from birth)				Authors' conclusions:
N = 20011 (1 trial)				p = 0.87
WOMAN 2017		00/1705		Favours TXA
<1 hr	80/4846	80/4/26	0.98 (0.72, 1.33)	p = 0.028
1–3 hrs	57/2674	83/2682	0.69 (0.49, 0.96)	No significant
> 3hrs	90/2514	92/2369	1.00 (0.75, 1.33)	difference
				p = 1.0
Serious maternal	223/10030	224/9985	0.99 (0.83, 1.19)	No significant
				ainterence
N = 20015 (1 trial)				p = 0.92
WOMAN 2017				Heterogeneity NA
Serious maternal morbidity (multiple organ failure)	99/10032	105/9985	0.94 (0.71, 1.23)	No significant difference p = 0.65
N = 20168 (2 trials)	99/10032	105/9985	0.94 (0.71, 1.23)	, Heterogeneity NA ^₅
WOMAN 2017	0/77	0/74	Not estimable	
Ducloy-Bouthers 2011				
Serious maternal morbidity (respiratory failure) N = 20018 (1 trial)	108/10033	124/9985	0.87 (0.67, 1.12)	No significant difference p = 0.27 Heterogeneity NA
Sorious maternal	110/10077	115/9985	0.95 (0.77.1.27)	No cignificant
serious maternal morbidity (cardiac arrest)	10/10033	כסבב/כוו	0.73, 1.23)	difference
N = 20018 (1 trial)				p = 0.71
WOMAN 2017				Heterogeneity NA
	1	1	1	

STUDY DETAILS: Shakur 2018				
Serious maternal morbidity (renal failure) N = 20169 (2 trials)	129/10033	118/9985	1.09 (0.85, 1.39)	No significant difference p = 0.51
WOMAN 2017 Ducloy-Bouthers 2011	129/10033 0/77	118/9985 0/74	1.09 (0.85, 1.39) Not estimable	Heterogeneity NA ^b
Serious maternal morbidity (hepatic failure) N = 20169 (1 trial) WOMAN 2017	29/10033	30/9985	0.96 (0.58, 1.60)	No significant difference p = 0.88 Heterogeneity NA
Serious maternal morbidity (maternal seizure)	33/10033	43/9985	0.76 (0.49, 1.20)	No significant difference p = 0.24
N = 20169 (2 trials)	33/10033	43/9985	0.76 (0.49, 1.20)	Heterogeneity NA ^b
WOMAN 2017	0/77	0/74	Not estimable	
Ducloy-Bouthers 2011				
Blood loss, 500 mL or more after randomisation N = 151 (1 trial)	12/77	23/74	0.50 (0.27, 0.93)	Favours TXA p = 0.029 Heterogeneity NA
Ducloy-Bouthors 2011				
Blood loss, 1000 mL or more after randomisation N = 151 (1 trial) Ducloy-Bouthors 2011	4/77	8/74	0.48 (0.15, 1.53)	No significant difference p = 0.21 Heterogeneity NA
Mean blood loss N = 151 (1 trial) Ducloy-Bouthors 2011	280 ± 320 (n = 77)	387 ± 409 (n = 74)	-107.00 (-224.44, 10.44)	No significant difference p = 0.074 Heterogeneity NA
Transfusion rate, RBC N = 20167 (2 trials)	559/10110	5446/10057	1.00 (0.97, 1.03)	No significant difference
WOMAN 2017	546/10033	5426/9983	1.00 (0.98, 1.03)	p = 0.074
Ducloy-Bouthers 2011	13/77	20/74	0.62 (0.34, 1.16)	Heterogeneity NR
EXTERNAL VALIDITY		1	1	

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population with some caveats

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats

Population of WOMAN 2017 and Ducloy-Bouthors, 2011 included countries with a similar health care system as Australia, however WOMAN 2017 also included low- and middle- income countries.

Additional comments

List of included studies (patients with critical bleeding):

WOMAN 2017; Ducloy-Bouthors 2011

List of ongoing studies that may be relevant:

Sambou 2015 (EUCTR2015-002499-26-FR) Tranexamic acid to reduce blood loss in haemorrhagic caesarean delivery: a multicenter randomised double-blind placebo controlled dose ranging study (TRACES).

CI, confidence interval; ITT, intention-to-treat; MD, mean difference; NA, not applicable; PP, per-protocol; PPH, primary postpartum haemorrhage; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

b. Zero events in either group in Ducloy-Bouthers 2011 (N = 151) therefore all estimable data are from one study (WOMAN 2017)

STUDY DETAILS: Chornenki 2019

Citation

Chornenki, NLJ., Um, KJ., Mendoza, PA., Samienezhad, A., Swarup, V., Chai-Adisaksopha, C. & Siegal, DM. 2019. Risk of venous and arterial thrombosis in non-surgical patients receiving systemic tranexamic acid: A systematic review and meta-analysis. *Thrombosis Research*, 179(1). 81-86. https://doi.org/10.1016/j.thromres.2019.05.003

Affiliation/Source of funds

Author affiliations: Three authors from the Department of Medicine at McMaster University (N.L.J.C., K.J.U., C.C.). Three authors from the Population Health Institute at McMaster University (P.A.M., A.S., V.S.). One author from both (D.M.S) Conflicts of interest: The authors declared no conflicts of interest. (p 84)

Funding: This project was supported by a CanVECTOR research start up award to NLJC. DMS is the recipient of a Research Early Career Award from the Hamilton Health Sciences Foundation and a partnered Heart and Stroke Foundation of Canada/CanVECTOR ERLI Grant. (p 85)

Systematic review and I	Authors did not report	
meta-analysis of 22 RCTs	countries of included studies	Studies relevant to PICO: Obstetrics Arulkumaran 2017, Gungorduk 2013, Sentilhes 2018, Sujita 2018 Medical Chowdhary 1986, Sprigg 2014, Sprigg 2018, Tsementzis 1990, Hillman 2002, Roos 2000 Trauma Shakur 2010, Fakharian 2018, Yutthakasemsunt 2013
Intervention	Comparator	
Arulkumaran 2017, Gungorduk 2013, Sentilhes 2018, Sujita 2018: 1g of intravenous TXA Shakur 2010: 1g intravenous TXA over 10 minutes then another 1g intravenous TXA over 8 hours. Chowdhary 1986: 1g oral or intravenous TXA every 4 hours Fakharian 2018, Sprigg 2014, Sprigg 2018, Yutthakasemsunt, 2013: 1g intravenous TXA then 1g intravenous TXA over 8 hours. Tsementzis 1990: 9g intravenous TXA a day in six doses for 4 weeks. Hillman 2002: 1g intravenous TXA then 1g intravenous TXA 2 hours later then 1g intravenous TXA every 6 hours for up to 72 hours. Roos 2000: 1g intravenous TXA every 4 hours for one week, then 1.5g oral TXA every 6 hours for two weeks.	Arulkumaran 2017, Gungorduk 2013, Sentilhes 2018, Suj 2018, Shakur 2010, Fakharian 2018, Sprigg 2014, Sprigg 2018, Yutthakasemsunt 2013, Tsementzis 1990, Roos 200 Placebo comparator Chowdhary 1986, Hillman 2002: No TXA comparator	

Included studies enrolling adults with non-surgical indications for TXA (e.g. prevention or treatment of bleeding not part of a planned surgical protocol or as planned medical management)

The average (mean or median) age ranged from 24 years to 69 years in the TXA group and 25 years to 68 years in the non-TXA group.

Arulkumaran 2017: Women requiring treatment of post-partum haemorrhage.

Shakur 2010: Patients with non-specific traumatic injury.

Not relevant for these guidelines

Gungorduk 2013, Sentilhes 2018, Sujita 2018: Women enrolled for prevention of post-partum haemorrhage.

Sprigg 2014, Sprigg 2018: Patients with intracerebral haemorrhage.

Chowdhary 1986, Tsementzis 1990, Roos 2000, Hillman 2002: Patients with subarachnoid haemorrhage.

Fakharian 2018, Yutthakasemsunt 2013: Patients with traumatic brain injury.				
Length of follow-up	Outcomes measured			
Databases searched: MEDLINE, EMBASE and CENTRAL	Mortality			
(from January 1985 to August 2018)	Deep vein thrombosis			
	Pulmonary embolism			
	Myocardial infarction			
	Stroke			
INTERNAL VALIDITY				

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): High

Description: No or one non-critical weakness – the systematic review provides an accurate and comprehensive summary of the results of the available studies that address the question of interest.

Risk of bias of included studies: A risk of bias assessment was conducted using the Cochrane Risk of Bias Tool. Five studies were judged to be at high risk of bias, 9 studies were judged to be at unclear risk of bias and 7 studies were judged low risk of bias. In a sensitivity analysis, the authors restricted analysis to studies judged to be low risk of bias and found the significant effect remained the same.

RESULTS:				
Outcome	[intervention]	[comparator]	Risk estimate (95%	Statistical significance
No. patients	n/N (%)	n/N (%)	CI)	<i>p</i> -value
(No. trials)	Mean ± SD	Mean ± SD		Heterogeneity ^a
				l² (p-value)
TXA versus placebo/no TX	(A			1
Mortality	2087/22014 (9.5%)	2269/22063 (10.3%)		NR
N = 44077				
(10 studies)				
Chowdhary 1986	5/65 (7.7%)	8/64 (12.5%)	RR 0.62 (0.21, 1.78)	
Tsementzis 1990	22/50 (44.0%)	14/50 (28.0%)	RR 1.57 (0.91, 2.71)	
Roos 2000	76/229 (33.2%)	75/233 (32.2%)	RR 1.03 (0.79, 1.34)	
Hillman 2002	27/254 (10.6%)	32/251 (12.7%)	RR 0.83 (0.52, 1.35)	
Shakur 2010	1463/10060 (14.5%)	1613/10067 (16.0%)	RR 0.91 (0.85, 0.97)	
Yutthakasemsunt 2013	12/120 (10.0%)	17/118 (14.4%)	RR 0.69 (0.35, 1.39)	
Sprigg 2014	3/16 (18.8%)	2/8 (25.0%)	RR 0.75 (0.16, 3.62)	
Arulkumaran 2017	227/9985 (2.3%)	256/10033 (2.6%)	RR 0.89 (0.75, 1.06)	
Sprigg 2018	250/1161 (21.5%)	249/1164 (21.4%)	RR 1.01 (0.86, 1.18)	
Fakharian 2018	2/74 (2.7%)	3/75 (4%)	RR 0.68 (0.12, 3.93)	
Stroke	85/21424 (0.4%)	88/21384 (0.4%)	RR 1.10 (0.68, 1.78)	No significant
N = 42808				difference
(5 studies)				p = 0.71
Tsementzis 1990	6/50 (12.0%)	2/50 (4.0%)	RR 3.00 (0.64, 14.16)	Mild heterogeneity
Shakur 2010	55/10060 (0.5%)	66/10067 (0.7%)	RR 0.83 (0.58, 1.19)	l ² = 31% (p = 0.21)
Yutthakasemsunt 2013	0/120	3/118 (2.5%)	RR 0.14 (0.01, 2.69)	
Arulkumaran 2017	8/10033 (0.1%)	6/9985 (0.1%)	RR 1.33 (0.46, 3.82)	
Sprigg 2018	16/1161 (1.4%)	11/1164 (0.9%)	RR 1.46 (0.68, 3.13)	
Myocardial infarction	48/21254 (0.2%)	64/21216 (0.3%)	RR 0.88 (0.43, 1.84)	No significant
N = 42470				difference
(3 studies)				p = 0.74
Shakur 2010	35/10060 (0.3%)	55/10067 (0.5%)	RR 0.64 (0.42, 0.97)	Moderate
Arulkumaran 2017	2/10033 (0.0%)	3/9985 (0.0%)	RR 0.66 (0.11, 3.97)	heterogeneity
Sprigg 2018	11/1161 (0.9%)	6/1164 (0.5%)	RR 1.84 (0.68, 4.95)	l² = 46% (p = 0.15)
Pulmonary embolism	113/21598 (0.5%)	116/21563 (0.5%)	OR 0.97 (0.75, 1.26)	No significant
N = 43161				difference
(6 studies)				p = 0.83

Chowdhary 1986	1/65 (1.5%)	1/64 (1.6%)	OR 0.98 (0.06, 16.08)	No significant
Tsementzis 1990	2/50 (4.0%)	1/50 (2.0%)	OR 2.04 (0.18, 23.27)	heterogeneity
Roos 2000	1/229 (0.4%)	0/233	OR 3.07 (0.12, 75.65)	l² = 0% (p = 0.94)
Shakur 2010	72/10060 (0.7%)	71/10067 (0.7%)	OR 1.01 (0.73, 1.41)	
Arulkumaran 2017	17/10033 (0.2%)	20/9985 (0.2%)	OR 0.85 (0.44, 1.62)	
Sprigg 2018	20/1161 (1.7%)	23/1164 (2.0%)	OR 0.87 (0.47, 1.59)	
Deep Vein Thrombosis	63/23164 (0.3%)	66/23123 (0.3%)		NR
N = 46287				
(6 studies)				
Tsementzis 1990	0/50	3/50 (6.0%)	RR 0.14 (0.01, 2.70)	
Shakur 2010	40/10060 (0.4%)	41/10067 (0.4%)	RR 0.98 (0.63, 1.51)	
Sprigg 2014	1/16 (6.25%)	0/8	RR 1.59 (0.07, 35.15)	
Arulkumaran 2017	3/10033 (0.0%)	7/9985 (0.1%)	RR 0.43 (0.11, 1.65)	
Sprigg 2018	19/1161 (1.6%)	14/1164 (1.2%)	RR 1.36 (0.69, 2.70)	
Sentilhes 2018	0/1844	1/1849 (0.1%)	RR 0.33 (0.01 (8.20)	

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is not directly generalisable to the Australian population and it is hard to judge whether it is sensible to apply based on several reporting errors and limited study information

Applicability (relevance of the evidence to the Australian health care system)

The evidence is not applicable to the Australian healthcare context based on several reporting errors and limited study information

Additional comments

Authors conclusions:

The authors have concluded that TXA significantly reduced all-cause mortality without an increased risk of venous or arterial thrombotic complications when given for prevention or treatment of non-surgical bleeding, although the optimal timing and dosing strategy are uncertain.

List of relevant included studies:

Shakur 2010, Arulkumaran 2017

Strikethrough: study not relevant for this review

CI, confidence interval; NR, not reported; OR, odds ratio; PICO, population intervention comparator outcome; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation; TXA, tranexamic acid.

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Ageron 2020

Citation

Ageron FX, Gayet-Ageron A, Ker K, Coats TJ, Shakur-Still H and Roberts I, for the Antifibrinolytics Trials Collaboration. Effect of tranexamic acid by baseline risk of death in acute bleeding patients: a meta-analysis of individual patientlevel data from 28 333 patients. British Journal of Anaesthesia, 2020;124 (6): 676-683

Affiliation/Source of funds

Author affiliations: Clinical Trials Unit, London School of Hygiene and Tropical Medicine, London, UK; Lausanne University Hospital, Lausanne, Switzerland; University Hospitals of Geneva, Geneva, Switzerland; University of Leicester, Leicester, UK.

Conflicts of interest: The authors declared no conflicts of interest.

Funding: The study was funded by the Wellcome Trust (grant 208870 to Roberts I and Shakur-Still H).

Study design	Level of evidence	Location	Setting	
Systematic review and meta-analysis of RCTs (2)	I	Not reported	CRASH-2: Trauma WOMAN: Obstetrics	
Intervention		Comparator		
CRASH-2: Tranexamic acid (dose not specified)		CRASH-2: Placebo		
WOMAN: Tranexamic acid (d	ose not specified)	WOMAN: Placebo		

STUDY DETAILS: Ageron 2020

Dopulation	characteristics
Population	characteristics

CRASH-2: 20,211 trauma patients

WOMAN: 20,060 women with postpartum haemorrhage					
Length of follow-up	Outcomes measured				
Databases searched: Permanent register of	Mortality/Death				
antifibrinolytic trials maintained by the London School of Hygiene and Tropical Medicine Clinical Trials Unit, based on MEDLINE, Embase, CENTRAL, Web of Science, PubMed, Popline, and the WHO International Clinical Trials Registry Platform (from 1 January 1946 to 5 July	Any vascular occlusive events				
	Fatal occlusive events				
	Myocardial infarction				
	Stroke				
2018).	Pulmonary embolism				
	Deep vein thrombosis				

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Moderate

Description: More than one non-critical weakness – the systematic review has more than one weakness but no critical flaws. It *may* provide an accurate summary of the results of the available studies that were included in the review. The authors did not screen studies in duplicate, consider publication bias, and did not provide conflict of interest information about the included studies.

Risk of bias of included studies:

The overall risk of bias of the included studies was judged to be at low in all domains.

RESULTS:				
Outcome	[intervention]	[comparator]	Risk estimate (95%	Statistical significance
No. patients	n/N (%)	n/N (%)	CI)	<i>p</i> -value
(No. trials)	Mean ± SD	Mean ± SD		Heterogeneity ^a
				l² (p-value)
Tranexamic acid versu	ıs placebo			
Mortality/Death	434/14270 (3.0%)	597/14063 (4.3%)	RR 0.72 (0.63, 0.81)	No significant difference
N = 28 333 (2 studies)	The authors stratified	d individual patient data b	y baseline risk of death as	p = 0.98
CRASH-2	a result of bleeding	g and found the effectiven	ess of TXA did not vary by	
WOMAN	baseline risk wh	en given within 3 h after b	interaction term).	
Any vascular occlusive	118/14270 (0.01%)	152/14063 (0.01%)	NR	No significant difference
events	The authors stratified	d individual patient data b	y baseline risk of death as	ρ = 0.255
N = 28 333 (2 studies)	a result of bleedir	ng and found no increased	risk of vascular occlusive	
CRASH-2	events with	tranexamic acid and it die	d not vary by baseline risk $(n = 0.25)$	
WOMAN			eategones (p = 0.20)	
Fatal occlusive events	27/14270 (0.00%)	40/14063 (0.00%)	NR	No significant difference
N = 28 333 (2 studies)	The authors stratified	d individual patient data b	y baseline risk of death as	p = 0.058
CRASH-2	a result of bl	eeding and found no incre	eased risk of fatal vascular	
WOMAN	Occiusive events wit	IT TAA and it did not vary b		
Myocardial infarction	24/14270 (0.00%)	46/14063 (0.00%)	NR	No significant difference
N = 28 333 (2 studies)	The authors stratified	d individual patient data b	y baseline risk of death as	p = 0.909
CRASH-2	a result of bleeding a	and found no increased ris	k of myocardial infarction	
WOMAN	with TXA and			
Stroke	32/14270 (0.00%)	42/14063 (0.00%)	NR	No significant difference
N = 28 333 (2 studies)	The authors stratified	d individual patient data b	y baseline risk of death as	<i>P</i> = 0.152
CRASH-2	a result of bleeding a			
WOMAN		aia not vary by baseline	nsk categories (p = 0.152)	
Pulmonary embolism	54/14270 (0.00%)	56/14063 (0.00%)	NR	No significant difference

STUDY DETAILS: Ageron 2020

The authors stratified a result of bleeding ar with TXA and i	l individual patient data by nd found no increased risk it did not vary by baseline r	p = 0.739	
28/14270 (0.00%)	30/14063 (0.00%)	NR	No significant difference
The authors stratified	p = 0.214		
a result of bleeding			
	The authors stratified a result of bleeding a with TXA and i 28/14270 (0.00%) The authors stratified a result of bleeding	The authors stratified individual patient data by a result of bleeding and found no increased risk with TXA and it did not vary by baseline28/14270 (0.00%)30/14063 (0.00%)The authors stratified individual patient data by a result of bleeding and found no increased risk did not vary by baseline	The authors stratified individual patient data by baseline risk of death as a result of bleeding and found no increased risk of pulmonary embolism with TXA and it did not vary by baseline risk categories (p = 0.739) 28/14270 (0.00%) 30/14063 (0.00%) NR The authors stratified individual patient data by baseline risk of death as a result of bleeding and found no increased risk of DVT with TXA and it did not vary by baseline risk categories (p = 0.214)

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population with some caveats. The included studies are performed in a large cohort and are likely to be relevant to patients in Australia.

Patients included in the CRASH-2 study were classified as being at risk of significant bleeding, in addition to being diagnosed with major haemorrhage. Patients in the WOMAN trial were at risk of postpartum haemorrhage, however severity of diagnosis and life-threatening nature of haemorrhage for these patients was not specified. It is therefore important to note that an unspecified percentage of the study populations are likely representative of the Guidelines target population, but overall generalisability is uncertain.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with few caveats. The systematic review did not provide the location of the included RCTs.

Data from the CRASH-2 trial comes from 40 countries, with a variety of healthcare systems. The same can be said for WOMAN, where data was collected from 21 countries. It is difficult to comment on the direct applicability of the results in the context of Australian health care.

Additional comments

Authors conclusions:

Tranexamic acid appears to be safe and effective for patients treated within 3 hours since injury. Because many deaths are in patients at low and intermediate risk, tranexamic acid use should not be restricted to the most severely injured or bleeding patients. As tranexamic acid is safe, it should be considered as an early preventive measure rather than a treatment for severe coagulopathic bleeding.

List of relevant included studies:

CRASH-2 trial, WOMAN trial

CI, confidence interval; NR, not reported; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Della Corte 2020

Citation

Della Corte L, Saccone G, Locci M, Carbone L, Raffone A, Giampaolino P, Ciardulli A, Berghella V, Zullo F. Tranexamic acid for treatment of primary postpartum haemorrhage after vaginal delivery: a systematic review and meta-analysis of randomised controlled trials. The Journal of Maternal-Fetal & Neonatal Medicine, 33:5, 869-874. DOI: 10.1080/14767058.2018.1500544

Affiliation/Source of funds

Author affiliations: Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples "Federico II", Naples, Italy; Department of Obstetrics and Gynaecology, Catholic University of the Sacred Heart, Rome, Italy; Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynaecology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, USA

Conflicts of interest: The authors declared no conflicts of interest.

Funding: Not reported

Study design	Level of evidence	Location	Setting
Systematic review and meta-analysis of RCTs	1	Ducloy-Bouthors 2011: France WOMAN 2017: International (21 countries)	Obstetrics

STUDY DETAILS: Della Corte 2020					
Intervention			Comparato	or	
Ducloy-Bouthors 2011: 4g TJ then 1g TXA per hour over 6 IU oxytocin every 30 minute hour, bladder catheter, man placenta.	XA in 1 hour (loading o 5 hours. Other interve es, 500 µg sulproston nual removal of retair	dose) ntions: 30 e in 1 ned	Ducloy-Bouthors 2011: No treatment WOMAN 2017: Placebo		
WOMAN 2017: 1g TXA (loadi 1g TXA if bleeding continue restarted within 24 hours of interventions: oxytocin, erg prostaglandin, uterine mas manual removal of retained intrauterine tamponade.	ing dose) plus a secor d after 30 min or stop f the first dose. Other ometrine, misoprosto sage, bladder cathete d placenta (if necessa	nd dose of oped and ol, er, ry),			
Population characteristics	5				
Ducloy-Bouthors 2011: Patie	ents with PPH > 800m	۱L			
WOMAN 2017: Patients with	n PPH >500mL		-		
Length of follow-up			Outcomes	measured	
Databases searched: Medlin	ne, EMBASE, Web of S wid. and Cochrane Lik	Science,	Maternal death due to bleeding		
(from inception to February	/ 2018).	лагу	Maternal death (all causes)		
	,,		Deep-vein thrombosis		
			Muccardial infarction		
			Stroke		
			Surgical int	ervention	
			Blood trans	sfusions	
			Organ failu	re	
INTERNAL VALIDITY					
Overall QUALITY of the sys	stematic review (des	criptive)			
Rating (AMSTAR): Moderate					
<i>Description:</i> More than one non-critical weakness – the systematic review has more than one weakness but no critical flaws. It <i>may</i> provide an accurate summary of the results of the available studies that were included in the review.					
Risk of bias of included stud	dies: The overall risk o	f bias WON	1AN was dee	emed to be low, as it v	vas placebo controlled
and double-blind. Ducloy-Bouthors was unable to be assessed for selection bias, detection bias and other bias.					as and other bias.
Ducioy-Boulhors was assessed to be at high risk of performance blas.					
RESULIS:	11	F = = = = = =		Diale antice sta	Chartistic al simulation
No patients	n/N (%)	icompara	itorj	RISK ESTIMATE (95% CI)	statistical significance n-value
(No. trials)	Mean ± SD	Mean ± S	D	(Heterogeneity

TXA vs no TXA/placebo

Maternal death, all cause	148/7155 (2.1%)	172/7180 (2.4%)	RR 0.86 (0.69, 1.07)	p = NR
N = 14 335 (2 studies)				
Ducloy-Bouthors 2011	0/72	0/72		
WOMAN 2017	148/7083 (2.1%)	172/7108 (2.4%)		
Maternal death due to bleeding	110/7155 (1.5%)	135/7180 (1.9%)	RR 0.82 (0.64, 1.05)	p = NR
N = 14 335 (2 studies)				
Ducloy-Bouthors 2011	0/72	0/72		
WOMAN 2017	110/7083 (1.6%)	135/7108 (1.9%)		
Deep vein thrombosis	0/72	0/72	Not estimable	p = NR
N = 144 (1 study)				
Ducloy-Bouthors 2011				

l² (p-value)

STUDY DETAILS: Della	Corte 2020			
Pulmonary embolism	0/72	0/72	Not estimable	p = NR
N = 144 (1 study)				
Ducloy-Bouthors 2011				
Myocardial infarction	0/72	0/72	Not estimable	p = NR
N = 144 (1 study)				
Ducloy-Bouthors 2011				
Stroke	0/72	0/72	Not estimable	p = NR
N = 144 (1 study)				
Ducloy-Bouthors 2011				
Surgical intervention	1379/7152 (19.3%)	1453/7180 (20.2%)	RR 0.95 (0.89, 1.02)	p = NR
N = 14 332 (2 studies)				No significant
Ducloy-Bouthors 2011	4/72 (5.6%)	5/72 (6.9%)		heterogeneity
WOMAN 2017	1375/7080 (19.4%)	1448/7108 (20.4%)		$I^2 = 0\%$
Blood transfusions	10/72 (13.9%)	13/72 (18.1%)	RR 0.77 (0.63, 1.64)	p = NR
N = 144 (1 study)				
Ducloy-Bouthors 2011				
Organ failure	0/72	0/72	Not estimable	p = NR
N = 144 (1 study)				
Ducloy-Bouthors 2011				
EXTERNAL VALIDITY				
Generalisability (relevanc	e of the study popul	ation to the Guideline	es target population)	
The evidence is not directly	y generalisable to the	Australian population	, and it is difficult to jue	dge if it can be sensibly
applied. The studies were p	performed in a large o	cohort of women from	emerging economies.	
Applicability (relevance of the evidence to the Australian health care system)				
Ducloy-Bouthors 2011 was performed in France which has a similar healthcare system to Australia however, the				
difficult to judge applicability to the Australian healthcare system.				
Additional comments				
Authors conclusions:				
In women with established	d primary PPH after v	aginal delivery. the use	e of TXA reduces the ris	sk of hysterectomy and
does not increase the risk o	of thromboembolic e	vents. We recommend	l 1g intravenous TXA so	oon after the diagnosis of
PPH, plus a second dose of	f 1g TXA if bleeding co	ontinues after 30 min.		
List of relevant included st	udies:			
Ducloy-Bouthors 2011, WO	MAN 2017			
CI, confidence interval; ICU, inte	nsive care unit; IU, interr	national units; NR, not repo	orted; PPH, postpartum h	aemorrhage; RCT, randomised
a. Only applicable to Level I stuc	lies with formal meta-ar	alysis. Heterogeneity defi	ned as follows: (i) no signi	ficant heterogeneity if P _{het} > 0.1
and I ² < 25%; (ii) mild hetero	geneity if I ² < 25%; mode	erate heterogeneity if I ² be	tween 25–50%; substantia	al heterogeneity I ² > 50%.
Cl, confidence interval; MD, mea acid	an difference; OR, odds r	atio; RCT, randomised con	trolled trial; SD, standard	deviation; TXA, tranexamic
a. Only applicable to Level I stud	lies with formal meta-ar	alysis. Heterogeneity defi	ned as follows: (i) no signi	ficant heterogeneity if P _{het} > 0.1
and $l^2 < 25\%$; (II) mild hetero	geneity if 1° < 25%; mode domised controlled trial	erate heterogeneity if I ^e be • DD_relative risk: SD_stand	tween 25–50%; substantia dard deviation: TXA_trane	al heterogeneity I² > 50%. xamic acid
a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P _{het} > 0.1				
and l^2 < 25%; (ii) mild heterogeneity if l^2 < 25%; moderate heterogeneity if l^2 between 25–50%; substantial heterogeneity l^2 > 50%.				
	-			

STUDY DETAILS: AI-Jeabory 2021

Citation

Al-Jeabory M, Szarpak L, Attila K, Simpson M, Smereka A, Gasecka A, Wieszorek W, Pruc M, Koselak M, Gawel W, Checinski I, Jaguszewski M J, Filipiak K J. Efficacy and Safety of Tranexamic Acid in Emergency Trauma: A Systematic Review and Meta-Analysis. *J. Clin Med.* 2021.10.1030. https://doi.org/10.3390/jcm10051030

Affiliation/Source of funds

Author affiliations: Outcomes Research Unit, Polish Society of Disaster Medicine, Poland; Maria Sklodowska-Curie Bialystok Oncology Center, Poland; NATO Centre of Excellence for Military Medicine, Budapest, Hungary; Central Texas Regional SWAT, Leander, USA; Department of Gastroenterology and Hepatology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland; Department of Cardiology, Medical University of Warsaw, Poland; Department of Cardiology, University Medical Center Utrecht, The Netherlands; Department of Emergency Medicine, Medical University of Warsaw, Poland; Maria Sklodowska-Curie Medical Academy in Warsaw, Poland; Department of Surgery, The Silesian Hospital in Opava, Czech Republic; Department of Emergency Medical Service, Wroclaw Medical University, Poland; First Department of Cardiology, Medical University of Gdansk, Poland

Conflicts of interest: The authors declared no conflicts of interest.

Funding: The authors declared no funding for this review.

Study design	Level of evidence	Location	Setting
Systematic review and	1-11/111	Adair 2020: USA	17 studies in the trauma
meta-analysis of RCTs (3),		Cole 2020: UK	setting
retrospective studies (10)		Shakur 2010 (CRASH-2):	
and prospective studies (4).		Multi-country	
		El-Menyar 2020: Qatar	
		Guyette 2020 (STAAMP): USA	
		Howard 2017: USA	
		Kakaei 2017: Iran	
		Lipsky 2014: Israel	
		Morrison 2012: Afghanistan	
		Myers 2019: USA	
		Neeki 2017: USA	
		Neeki 2018: USA	
		Ng 2019: Canada	
		Rivas 2021: USA	
		Swendsen 2012: USA	
		Valle 2014: USA	
		Wafaisade 2016: Germany	
Intervention	1	Comparator	1
All studies: TXA infusion (dose n	ot specified)	All studies: no TXA	
Population characteristics			
Adair 2020: Combat			
Cole 2020: Civil			
Shakur 2010 (CRASH-2): Civil			
El-Menyar 2020: Civil			
Guyette 2020 (STAAMP): Civi			
Howard 2017: Combat			
Kakaei 2017: Civil			
Lipsky 2014: Combat			
Morrison 2012: Combat			
Myers 2019: Civil			
Neeki 2017: Civil			
Neeki 2018: Civil			
Ng 2019: Civil			
Rivas 2021: Civil			
Swendsen 2012: Civil			
Valle 2014: Civil			
Wafaisade 2016: Civil			
Length of follow-up Outcomes measured			
Databases searched: PubMee	d, Scopus, EMBASE, Web of	In-hospital mortality	
Science and CENTRAL (from inception to 10 January 2021).		Any vascular occlusive event	

Myocardial infarction
Stroke
Thromboembolic events
Pulmonary embolism
Deep vein thrombosis
Coagulation failure
Multiple organ failure
Acute kidney failure
Hepatic failure
Sepsis
Infection
Blood product transfusion
ICU length of stay
Hospital length of stay

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): High

Description: No or one non-critical weakness – the systematic review provides an accurate and comprehensive summary of the results of the available studies that address the question of interest.

Risk of bias of included studies: The authors determined that there were some concerns with the risk of bias in the included studies, provided in Supplemental Figure 4, 5, 6 and 7.

RESOLIS.				
Outcome	[intervention]	[comparator]	Risk estimate (95%	Statistical significance
No. patients	n/N (%)	n/N (%)	CI)	<i>p</i> -value
(No. trials)	Mean ± SD	Mean ± SD		Heterogeneity ^a
				l²(p-value)
TXA versus no TXA				
In-hospital mortality	2099/13559 (15.5%)	2547/15556 (16.4%)	OR 0.81 (0.62, 1.06)	No significant difference
Civilian and combat				p = 0.12
N = 29115				Significant heterogeneity
(3 RCT and 11				l² = 83% (p < 0.00001)
observational)				
CRASH-2 2010 (RCT)	1463/10060 (14.5%)	1613/10067 (16.0%)	OR 0.89 (0.83, 0.96)	
Guyette 2020 (RCT)	37/447 (8.3%)	43/453 (9.5%)	OR 0.86 (0.54, 1.36)	
Kakaei 2017 (RCT)	3/30 (10%)	4/30 (13.3%)	OR 0.72 (0.15, 3.54)	
El-Menyar 2020	25/102 (24.5%)	30/102 (29.4%)	OR 0.78 (0.42, 1.45)	
Myers 2019	136/189 (72.0%)	161/189 (85.2%)	OR 0.45 (0.27, 0.74)	
Neeki 2017	8/128 (6.3%)	13/125 (10.4%)	OR 0.57 (0.23, 1.44)	
Neeki 2018	13/362 (3.6%)	30/362 (8.3%)	OR 0.41 (0.21, 0.80)	
Rivas 2021	106/654 (16.2%)	91/254 (35.8%)	OR 0.35 (0.25, 0.48)	
Swendsen 2013	9/52 (17.3%)	17/74 (23.0%)	OR 0.70 (0.29, 1.73)	
Valle 2014	25/109 (22.9%)	14/105 (13.3%)	OR 1.93 (0.94, 3.97)	
Wafaisade 2016	38/258 (14.7%)	42/258 (16.3%)	OR 0.89 (0.55, 1.43)	
Morrison 2012	148/293 (50.5%)	218/603 (36.2%)	OR 1.80 (1.36, 2.39)	
(combat)				
Howard 2017	82/849 (9.7%)	271/2924 (9.3%)	OR 1.05 (0.81, 1.36)	
(combat)				
Lipsky 2014	6/26 (23.1%)	0/10	OR 6.66 (0.34, 129.92)	
(combat)				
Myocardial	45/11288 (0.4%)	64/10982 (0.6%)	OR 0.66 (0.45, 0.97)	Favours TXA
Infarction				<i>p</i> = 0.03
N = 22270				

(5 studies)				No significant heterogeneity l ² = 0%
Stroke N = 22270 (5 studies)	73/11288 (0.6%)	76/10982 (0.7%)	OR 0.90 (0.65, 1.24)	No significant difference p = 0.50 Moderate heterogeneity $l^2 = 40\%$
Thromboembolic events N = 2271 (6 studies)	67/1308 (5.1%)	62/963 (6.4%)	OR 0.89 (0.37, 2.11)	No significant difference p = 0.79 Moderate heterogeneity $l^2 = 60\%$
Pulmonary embolism N = 25 912 (5 studies)	137/12112 (1.1%)	117/13800 (0.8%)	OR 1.57 (0.79, 3.13)	No significant difference p = 0.20 Significant heterogeneity $l^2 = 80\%$
Deep vein thrombosis N = 26 165 (6 studies)	105/12240 (0.9%)	105/13925 (0.8%)	OR 1.13 (0.51, 2.51)	No significant difference p = 0.77 Significant heterogeneity $l^2 = 83\%$
Coagulation failure N = 385 (1 study)	5/160 (3.1%)	5/225 (2.2%)	OR 1.42 (0.40, 4.99)	No significant difference p = 0.58
Multiple organ failure N = 1480 (3 studies)	106/681 (15.6%)	156/799 (19.5%)	OR 0.87 (0.66, 1.16)	No significant difference p = 0.35 Moderate heterogeneity $l^2 = 39\%$
Acute kidney failure N = 1011 (2 studies)	22/212 (10.4%)	17/799 (2.1%)	OR 1.97 (1.01, 3.86)	No significant difference p = 0.05 No significant heterogeneity $l^2 = 0\%$
Hepatic failure N = 385 (1 study)	5/160 (3.1%)	2/225 (0.9%)	OR 1.21 (0.81, 1.82)	No significant difference p = 0.35
Sepsis N = 186 (1 study)	4/67 (6.0%)	8/119 (6.7%)	OR 0.88 (0.26, 3.04)	No significant difference p = 0.84
Infection N = 385 (1 study)	89/160 (55.6%)	113/225 (50.2%)	OR 1.24 (0.83, 1.87)	No significant difference p = 0.30
ICU length of stay, days N = 2693 (7 studies)	8.7 ± 11.2	7.0 ± 14.6	MD 1.35 (-0.58, 3.27)	No significant difference p = 0.17 Significant heterogeneity $l^2 = 98\%$
Hospital length of stay, days N = 2693 (7 studies)	20.6 ± 24.5	17.2 ± 23.8	MD 1.18 (-3.23, 5.58)	No significant difference p = 0.60 Significant heterogeneity $l^2 = 98\%$
EXTERNAL VALIDI	ТҮ			

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population with some caveats.

13 studies included in the systematic review were in civilian populations and is relevant to the Australian population.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian healthcare context with few caveats.

Cole 2020 was performed in the UK and Ng 2019 was performed in Canada, both of which have similar healthcare systems to Australia.

Additional comments

Authors conclusions:

The application of TXA is beneficial in severely injured patients, undergoing shock who require massive blood transfusions. Patients who undergo treatment with TXA should be monitored for clinical signs of thromboembolism, since TXA is a standalone risk factor of a thromboembolic event and the D-dimers in traumatic patients are almost always elevated.

List of relevant included studies:

Adair 2020, Cole 2020, Shakur 2010 (CRASH-2), El-Menyar 2020, Guyette 2020 (STAAMP), Howard 2017, Kakaei 2017, Lipsky 2014, Morrison 2012, Myers 2019, Neeki 2017, Neeki 2018, Ng 2019, Rivas 2021, Swendsen 2012, Valle 2014, Wafaisade 2016

Cl, confidence interval; ICU, intensive care unit; MD, mean difference; OR, odds ratio; RCT, randomised controlled trial; SD, standard deviation; TXA, tranexamic acid

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Almuwallad 2021

Citation

Almuwallad A, Cole E, Ross J, Perkins Z, Davenport R. The impact of prehospital TXA on mortality among bleeding trauma patients: A system review and meta-analysis. *J Trauma Acute Care Surg*. 2021;90: 901–907.

Affiliation/Source of funds

Author affiliations: Centre for Trauma Science, Blizzard Institute, Queen Many University, London, United Kingdom; Emergency Medical Services Department, Faculty of Applied Medical Sciences, Jazan University, Kingdom of Saudi Arabia.

Conflicts of interest: The authors declare no conflicts of interest.

Funding: Not reported

Study design	Level of evidence	Location	Setting
Systematic review and	1-11/111	Guyette 2020: USA	Trauma
meta-analysis of RCTs (1)		Elmenyar 2019: Qatar	
and observational studies		Neeki 2018: USA	
(3)		Wafasade 2016: Germany	
Intervention		Comparator	·
Guyette 2020: TXA (dose not specified)		Guyette 2020: no TXA	
Elmenyar 2019: TXA (dose not specified)		Elmenyar 2019: no TXA	
Neeki 2018: TXA (dose not specified)		Neeki 2018: no TXA	
Wafasade 2016: TXA (dose not specified)		Wafasade 2016: no TXA	

Population characteristics

Guyette 2020: Civilian trauma patients, 18-90 years old, systolic blood pressure <90, heart rate>110. Elmenyar 2019: Civilian trauma patients,16-80 years old with ongoing significant haemorrhage, systolic blood pressure <90, heart rate >110.

Neeki 2018: Civilian trauma patients, ≥18 years old with blunt or penetrating injury, signs and symptoms of haemorrhagic shock and major amputation.

Wafasade 2016: Civilian trauma patients with primarily admitted trauma, critical injuries, National Advisory Committee (NACA) IV, V, and VI, admitted to trauma registry.

Length of follow-up	Outcomes measured
Databases searched: EMBASE, Medline (PubMed), BNI, EMCARE, HMIC, SCOPUS and CENTRAL. A gray literature search was performed for: World Health Organization, International Clinical Trial Registry Platform, Clinicaltrials.gov, European Clinical Trial Registry, University of Toronto Library, Google search and Google scholar (from inception-).	24-hour mortality 28-to-30-day mortality Venous thromboembolism

STUDY DETAILS: Almuwallad 2021

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): High

Description: No or one non-critical weakness – the systematic review provides an accurate and comprehensive summary of the results of the available studies that address the question of interest.

Risk of bias of included studies: The quality assessment demonstrated that the RCT was at a low risk of bias in different domains including selection bias, performance bias, detection bias, attrition bias and reporting bias. The overall risk of bias was low for the observational studies. Three studies were observational cohort studies which are known to be at risk of confounding and bias due to a lack of randomisation.

RESULTS:				
Outcome No. patients (No. trials)	[intervention] n/N (%) Mean ± SD	[comparator] n/N (%) Mean ± SD	Risk estimate (95% CI)	Statistical significance p-value Heterogeneity ^a I ² (p-value)
TXA versus no TXA				
Mortality, 24 hours N = 2140 (3 studies)	38/1067 (3.6%)	62/1073 (5.8%)	OR 0.60 (0.37, 0.99)	No significant difference p = 0.05 Minimal heterogeneity
Wafaisade 2016	15/258 (5.8%)	32/258 (12.4%)	OR 0.44 (0.23, 0.83)	l ² = 27% (<i>p</i> = 0.26)
Neeki 2018	7/362 (1.9%)	13/362 (3.6%)	OR 0.53 (0.21, 1.34)	
Guyette 2020	16/447 (3.6%)	17/453 (3.8%)	OR 0.95 (0.47, 1.91)	
Mortality, 28 to 30 days N = 2143 (3 studies)	85/1062 (8.0%)	117/1072 (10.9%)	OR 0.69 (0.47, 1.02)	No significant difference p = 0.06 Minimal heterogeneity $l^2 = 38\% (p = 0.20)$
Wafaisade 2016	36/258 (14.0%)	42/258 (16.3%)	OR 0.83 (0.51, 1.35)	
Neeki 2018	13/362 (4.0%)	30/362 (8.3%)	OR 0.41 (0.21, 0.80)	
Guyette 2020	36/442 (8.1%)	45/452 (10%)	OR 0.80 (0.51, 1.27)	
Venous thromboembolism N = 2020 (4 studies)	40/982 (4.0%)	31/1038 (3.0%)	OR 1.49 (0.90, 2.46)	No significant difference p = 0.12 Minimal heterogeneity $l^2 = 0\% (p = 0.48)$
Wafaisade 2016	4/71 (5.6%)	10/121 (8.3%)	OR 0.66 (0.20, 2.20)	
Neeki 2018	2/362 (0.6%)	2/362 0.6%)	OR 1.00 (0.14, 7.14)	
Elmenyar 2019	9/102 (8.8%)	5/102 (4.9%)	OR 1.88 (0.61, 5.81)	
Guyette 2020	25/447 (5.6%)	14/453 (3.1%)	OR 1.86 (0.95, 3.62)	
	· · · · · · · · · · · · · · · · · · ·		· · · ·	·

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population.

The included studies were conducted in civilian populations. The studies were performed in a wide range of ages which is reflective of the Australian population.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats.

Three studies were conducted in the USA and Qatar, which do not have similar health care systems to Australia. However, Wafaisade 2016 was conducted in Germany and therefore may be applicable to the Australian healthcare system.

Additional comments

Authors conclusions:

STUDY DETAILS: Almuwallad 2021

The review examined the impact of prehospital TXA on mortality and the incidence of VTE in bleeding trauma patients. Meta-analysis revealed a significant reduction in early (24 hours), and trend toward improving (28 to 30 days) mortality with no associated increased risk of VTE among patients who received prehospital TXA. Earlier administration of TXA either in hospital or during the prehospital phase of care is associated with greater efficacy and improved overall survival in bleeding trauma patients

without an increased risk of VTE.

List of relevant included studies:

Guyette 2020, Elmenyar 2019, Neeki 2018, Wafasade 2016

Cl, confidence interval; RCT, randomised controlled trial; OR, odds ratio; SD, standard deviation; TXA, tranexamic acid

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

Randomised controlled trials

STUDY DETAILS: HALT-IT 2020

Citation

HALT-IT Collaborators. Effects of a high-dose 24-h infusion of tranexamic acid on death and thromboembolic events in patients with acute gastrointestinal bleeding (HALT-IT): an international randomised, double-blind, placebo-controlled trial. *Lancet*. 2020 Jun 20;395(10241):1927-1936. doi: 10.1016/S0140-6736(20)30848-5.

Affiliation/Source of funds

Author affiliations: Author affiliations listed on pages 1934 and 1935 of the publication. Conflicts of interest: The authors declared no conflicts of interest.

Funding: UK National Institute for Health Research Health Technology Assessment Programme.

•			
Study design	Level of evidence	Location	Setting
Randomised controlled trial	Π	UK, Pakistan, Nigeria, Egypt, Malaysia, Georgia, Romania, Nepal, Sudan, Saudi Arabia, Spain, Ireland, Albania, Papua New Guinea, and Australia	164 hospitals
Intervention		Comparator	
Loading dose of 1 g tranexamic acid, which was added to 100 mL infusion bag of 0.9% sodium chloride and infused by slow intravenous injection over 10 min, followed by a maintenance dose of 3 g tranexamic acid added to 1 L of any isotonic intravenous solution and infused at 125 mg/h for 24 h		Placebo (sodium chloride 0.9	%)

Population characteristics

Adults aged either 16 years or 18 years and older (depending on country) with significant gastrointestinal bleeding defined as a risk of bleeding to death and included patients with hypotension, tachycardia, signs of shock or those likely to need transfusion or urgent endoscopy or surgery.

Mean (SD) age (yrs): 58.1 (17); suspected active bleeding: 87% to 88%; signs of shock 43% to 44%;

Length of follow-up	Outcomes measured
Length of follow-up Participants enrolled between 4 July 2013 and 21 June 2019.	Outcomes measured Primary outcome: - Death due to bleeding within 5 days of randomisation. Secondary outcomes: - Death due to bleeding within 24 hours and 28 days of randomisation,
	 All-cause and cause-specific mortality at 28 days, rebleeding within 24 hours, within 5 days and within 28 days of randomisation, surgery or radiological intervention, blood product transfusion, thromboembolic events (deep vein thrombosis, pulmonary embolism, stroke, and myocardial infarction), seizures,
	 other complications (including other significant cardiac event, sepsis, pneumonia, respiratory failure, renal failure, liver failure), days in an intensive care unit, and functional status.
INTERNAL VALIDITY	

Overall risk of bias (descriptive)

Rating: Unclear

Description: The study has plausible bias that raises some doubt about the results.

The primary outcome was altered during the course of the trial, with a subsequent increase in sample size. Modified intent-to-treat analysis (not including patients who did not received dose of the allocated treatment and those for whom outcome data on death were not available).

RESULTS				
Outcome	Intervention n/N (%) Mean ± SD	Comparator n/N (%) Mean ± SD	Risk estimate (95% CI)	Statistical significance p-value
TXA versus no TXA	1			
All-cause mortality N = 11 937	564/5956 (9.5)	548/5981 (9.2)	RR 1.03 (0.92, 1.16)	NR
Death due to bleeding within 24 hours N = 11 937	124/5956 (2.1)	120/5981 (2.0)	RR 1.04 (0.81, 1.33)	NR
Death due to bleeding within 28 days N = 11 937	253/5956 (4.2)	262/5981 (4.4)	RR 0.97 (0.82, 1.15)	NR
Rebleeding within 24 hours N = 11 937	41/5956 (0.7)	41/5981 (0.7)	RR 1.00 (0.65, 1.55)	NR
Rebleeding within 28 days N = 11 937	410/5956 (6.8)	448/5981 (7.5)	RR 0.92 (0.81, 1.05)	NR
Any thromboembolic event N = 11 929	86/5952 (14)	72/5977 (1.2)	RR 1.20 (0.88, 1.64)	NR
Venous events (deep vein thrombosis, pulmonary embolism) N =11 929	48/5952 (0.8)	26/5977 (0.4)	RR 1.85 (1.15, 2.98)	NR
Deep vein thrombosis N = 11929	23/5952 (0.4)	12/5977 (0.2)	RR 1.92 (0.96, 3.86)	NR
Pulmonary embolism N = 11 929	28/5952 (0.5)	16/5977 (0.3)	RR 1.76 (0.95, 3.24)	NR
Arterial events (myocardial infarction, stroke) N = 11 929	42/5952 (0.7)	46/5977 (0.8)	RR 0.92 (0.60, 1.39)	NR
Myocardial infarction N = 11 929	24/5952 (0.4)	28/5977 (0.5)	RR 0.86 (0.50, 1.48)	NR
Stroke N = 11 929	19/5952 (0.3)	18/5977 (0.3)	RR 1.06 (0.56, 2.02)	NR
Renal failure N = 11 929	142/5951 (2.4)	157/5978 (2.6)	RR 0.91 (0.73, 1.14)	NR
Liver failure N = 11 929	196/5952 (3.3)	184/5977 (3.1)	RR 1.07 (0.88, 1.30)	NR
Respiratory failure N = 11 930	105/5952 (1.8)	131/5978 (2.2)	RR 0.81 (0.62, 1.04)	NR
Cardiac event N = 11 929	100/5952 (1.7)	89/5977 (1.5)	RR 1.13 (0.85, 1.50)	NR
Sepsis	210/5952 (3.5)	216/5977 (3.6)	RR 0.98 (0.81, 1.18)	NR
Pneumonia	193/5952 (3.2)	174/5978 (2.9)	RR 1.11 (0.91, 1.36)	NR

N = 11 930				
Seizure N = 11 929	38/5952 (0.6)	22/5977 (0.4)	RR 1.73 (1.03, 2.93)	NR
Whole blood or RBC transfused, units N = NR	2·8 ± 2·4	2·9 ± 2·7	MD -0.06 (0.05, -0.18)	NR
FFP transfused, units N = NR	0·9 ± 2·4	1·0 ± 2·6	MD -0·05 (-0·01, -0·23)	NR
Platelets transfused, units N = NR	0·2 ± 0·9	0·2 ± 1·0	MD -0·02 (0·02, -0·06)	NR
EXTERNAL VALIDIT	Ý	·		·

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population with some caveats. The study included patients treated in Australia, however also included various other countries such as Saudi Arabia, Sudan and Pakistan).

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian healthcare context.

Additional comments

Authors conclusions:

Tranexamic acid did not reduce death from gastrointestinal bleeding but was associated with an increased risk of venous thromboembolic events and seizures.

Cl, confidence interval; h, hours; NR, not reported; RBC, red blood cells; RCT, randomised controlled trial; RR, risk ratio; SD, standard deviation; TXA, tranexamic acid; UK, United Kingdom

Observational / cohort studies

STUDY DETAILS: Myers 2019 Citation Myers, SP., Kutcher, ME., Rosengart, MR., Sperry, JL., Peitzman, AB., Brown, JB. & Neal, MD. 2019. Tranexamic acid administration is associated with an increased risk of posttraumatic venous thromboembolism. Journal of Trauma and Acute Care Surgery, 86(1). 20-27. doi: 10.1097/TA.000000000000000000 Affiliation/Source of funds Author affiliations: Department of General Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Division of Trauma and Critical Care, University of Mississippi Medical Center, Jackson, Mississippi. Conflict of interest: M.D.N. is an external scientific advisor to Janssen Pharmaceuticals. Remaining authors have no conflicts dedclared. Funding: The authors declared no sources of funding Study design Level of evidence Location Settina 111-3 USA (Pittsburgh) Level 1 Trauma Centre Retrospective cohort Intervention Comparator Treated with TXA within three hours of presentation No TXA administered to patient The authors do not mention the manner of administering TXA or how much the dosage was. **Population characteristics** Median age: 36 (TXA), 32 (unexposed) Female: 104/378 (27.5%) Mean weight: 85.95kg Length of follow-up **Outcomes measured** 21931 people were eligible for the study from 2012-2016. VTE (primary outcome) including DVT and PE 2651 patients were excluded based on: Survival, transfusion, ICU and hospital lengths of stay Prehospital anticoagulation = 2499 (secondary outcomes). Received pre-hospital TXA = 10 Known history of DVT/PE/ hereditary coagulopathy = 142 Method of analysis Propensity Score Matching: used to match each exposed person with an unexposed person with similar personal characteristics. Aims to equally distribute confounders amongst both groups and simulate random selection of people to exposed group. INTERNAL VALIDITY Overall risk of bias (descriptive) Rating: Serious Description: The study has some important problems and cannot be considered comparable to a well-performed randomised trial. RESULTS Intervention Population analysed Comparator **Available** 217 19 280 Analysed 189 189 Outcome Intervention Comparator **Risk estimate** Statistical significance (95% CI) n/N (%) n/N (%) p-value Mean ± SD Mean ± SD TXA versus no TXA VTE 29/189 (15.3%) 14/189 (7.4%) Adjusted OR 3.26 Favours intervention (1.3, 9.1) N = 378 p = 0.02Survival 136/189 (72%) 161/189 (85%) Adjusted OR 0.86 No significant (0.23, 3.25)difference N = 378 p = 0.83

STUDY DETAILS: Myers 2019

STODT DETAILS. My				
Patients requiring transfusion N = 378	156/189 (89%)	119/189 (64%)	NR	Favours intervention p < 0.001
Length of stay in ICU, mean N = 378	189/378 9.4 days ± 9.05	189/378 6.5 days ± 7.2	NR	Favours intervention p < 0.001
Length of stay in hospital, mean N = 378	189/378 18.2 days ± 17.3	189/378 10.9 days ± 10.9	NR	Favours intervention p < 0.001
Transfusion of platelets, units N = 378	1.18 ± 2.17	0.43 ± 1.43	NR	Favours intervention p < 0.001
Transfusion of packed RBCs, units N = 378	4.43 ± 5.57	2.53 ± 3.35	NR	Favours intervention p < 0.001
Transfusion of FFP, units N = 378	2.77 ± 5.14	1.44 ± 3.37	NR	Favours intervention p < 0.001
EXTERNAL VALIDITY	Y			

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population with some caveats

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats.

Additional comments

Authors conclusions:

Our data demonstrates that TXA may be an independent risk factor for VTE development, but was not associated with a survival benefit in this single-center cohort study

aOR, adjusted odds ratio; CI, confidence interval; DVT, deep vein thrombosis; FFP, fresh frozen plasma; ICU, intensive care unit; NR, not reported; PE, pulmonary embolus; RBC, red blood cell; SD, standard deviation; TXA, tranexamic acid; VTE, venous thromboembolism.

E8 Viscoelastic testing (Question 8)

Systematic reviews/meta-analyses

STUDY DETAILS: Da Luz 2014

Citation

Da Luz, L. T., Nascimento, B., Shankarakutty, A. K., Rizoli, S., & Adhikari, N. K. J. (2014). Effect of thromboelastography (TEG) and rotational thromboelastometry (ROTEM) on diagnosis of coagulopathy, transfusion guidance and mortality in trauma: Descriptive systematic review. Critical Care, 18 (5) (no pagination)(518). doi:http://dx.doi.org/10.1186/s13054-014-0518-9

Affiliation/Source of funds

The study was funded by a National Blood Foundation Grant.

Author affiliations: Dr. Rizoli is a member of a Scientific Advisory Board to CSL Behring, manufacturer of fibrinogen concentrate. He is also the recipient of a Canadian Institute of Health Research (CIHR) New Investigator award in partnership with NovoNordisk Canada, manufacturer of NovoSeven (recombinant factor VII).

Study design	Level of evidence	Location	Setting	
Descriptive systematic review of RCTs and observational studies (0 RCTs identified)	1 /11	Countries of included studies not provided	SC, Trauma	
Intervention		Comparator		
TEG/ROTEM guided transfusion		Standard of care		
<i>TEG:</i> Kashuk 2012, Tapia 2013				
ROTEM: Schöchl 2010, Schöch	l 2011			

Population characteristics

Only studies reporting effect of TEG/ROTEM guided transfusion reported here.

Kashuk 2012: Coh study in adult trauma patients transfused with at least 6 U RBCs in the first 6 hours (62% ISS \geq 36) before/after implementation of TEG-guidance

Schöchl 2010: Retrospective Coh study in massively bleeding adult trauma patients

Schöchl 2011: Coh study in massively bleeding adult trauma patients (with historical controls at different centre)

Tapia 2013: before/after Coh study in adult trauma patients (blunt and penetrating) transfused with at least 6 U RBCs in the first 24 hrs guided by TEG (pre-MTP) vs MTP protocol

Length of follow-up	Outcomes measured
Medline, Embase, Cochrane Controlled trials register	Diagnosis of coagulopathies
Citations published between database inception/1946 to	Transfusion management (prediction of massive
Feb 2014	transfusion and transfusion guidance)
	Mortality (prediction and reduction)

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Moderate

Description: More than one non-critical weakness – the systematic review has more than one weakness but no critical flaws. It may provide an accurate summary of the results of the available studies that were included in the review. No quantitative meta-analysis was performed.

Risk of bias of included studies: Authors used the Newcastle-Ottawa Quality Assessment scale for cohort studies (more stars denote higher quality, range 1–9). Scores are noted below. The overall quality of included studies was judged by the review authors to be moderate. Main concerns with the use of appropriate controls.

Schöchl 2010 and Schöchl 2011 – both scored 6 out of 9

Kashuk 2012 and Tapia 2013 – both scored 8 out of 9

STUDY DETAILS: Da Luz 2014				
RESULTS:				
Outcome	TEG/ROTEM	Standard of care	Risk estimate	Statistical significance
No. patients	n/N (%)	n/N (%)	(95% CI)	<i>p</i> -value
(No. trials)	Mean ± SD	Mean ± SD		Heterogeneity ^a
				l² (p-value)
TEG/ROTEM-guided trans	fusion versus N	o TEG/ROTEM		
Mortality				
N = 68 (1 Coh) Kashuk 2012 ⁵	10/34 (29%)	20/34 (58%)	NR	Favours TEG (p = 0.02) *not adjusted for confounders
N = 131 (1 Coh)				
Schöchl 2010 (FP, PLT,	NR (24.4%)	NR (33.7%) TRISS predicted	NR	p = 0.032
PCC- guided)		NR (28.7%) RISC predicted	NR	p > 0.05
(subgroup: excluding TBI)	NR (14%)	NR (27.8%) TRISS predicted	NR	NR
		NR (24.3%) RISC predicted	NR	NR
N = 681				
Schöchl 2011 º (FC & PCC vs FFP)	6/80 (7.5%)	60/601 (10%)	NR	No association p = 0.69
N = 289				
Tapia 2013 ^b (patients receiving > 6U RBC)	41/165 (25)	35/124 (28)	NR	No association observed in multivariate analysis °
(subgroup: patients with penetrating trauma receiving > 10 U RBCs)	NR	NR	NR	Favours TEG NR
, RBC transfusion avoided				
N = 681 (1 Coh)				
Schöchl 2011 (FC & PCC-guided vs FFP-guided)	NR/80 (29%)	NR/601 (3%)	NR	p < 0.001
N = 68 (1 Cob)				Equours TEG
Kashuk 2012 subaroun	NR	NR	NR	n = 0.048
(patients with MRTG > 9.2)				*not adjusted for confounders
PLT transfusion avoided				
N = 681 (1 Coh)				
Schöchl 2011 (FC&PCC-guided vs FF <i>P</i> -guided)	NR/80 (91%)	NR/601 (56%)	NR	p < 0.001
N = 68 (] Coh)				F
Kashuk 2012 subaroup	NR	NR	NR	Favours IEG
(patients with				p = 0.03
MRTG > 9.2)				confounders
CRYO transfusion avoided				Favours TFG
N = 68 (1 Coh)				p = 0.04
Kashuk 2012 subaroup				*not adjusted for
(patients with				confounders
MRTG > 9.2)				
EXTERNAL VALIDITY				
Generalisability (relevance	of the study p	opulation to the Guidelines t	arget population)
The evidence is directly ger	neralisable to the	e Australian population with so	ome caveats	

STUDY DETAILS: Da Luz 2014

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats

Additional comments

Authors conclusions:

There is limited evidence from observational data that TEG/ROTEM diagnose early trauma coagulopathy and may predict blood transfusion and mortality. Effects remain unproven in RCTs.

List of included studies

55 studies met their inclusion criteria (0 RCTs; 38 prospective Coh; 15 retrospective Coh; 2 before-after)

Only studies reporting effect of TEG/ROTEM guided transfusion reported here.

Cl, confidence interval; ISS, injury severity score; ITT, intention-to-treat; MD, mean difference; MRTG, maximum rate of thrombin formation; PP, per-protocol; RCT, randomised controlled trial; RR, relative risk; SC, single centre; SD, standard deviation

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

b. Data retrieved from primary study

c. Tapia 2013 noted RBC transfusion volume as in independent predictor of mortality.

STUDY DETAILS: Haas 2014

Citation

Haas, T., Görlinger, K., Grassetto, A., Agostini, V., Simioni, P., Nardi, G., & Ranucci, M. (2014). Thromboelastometry for guiding bleeding management of the critically ill patient: a systematic review of the literature. *Minerva Anestesiologica*, 80(12), 1320-1335.

Affiliation/Source of funds

The authors declared that the study received no funding.

The authors declared the following conflicts: CSL Behring, Octapharma, TEM International, Fresenius Kabi, Ve rum, Diagnostica, Sangart, Roche Diagnostics, Grifols SA, Novo Nordisk and Medtronic.

Klaus Görlinger is the Medical Director of TEM International.

-				
Study design	Level of evidence	Location	Setting	
Narrative review	1/11	Trauma	Trauma, SC and registries	
		Schöchl 2010, 2011:	Cardiac and aortic surgery,	
		Germany	SC	
		Görlinger 2012a, Nienaber	Liver transplant	
		2011: Austria/Germany		
		Schaden 2012: Austria		
		Cardiac and aortic surgery		
		NR		
		Liver transplant		
		Noval-Padillo 2010: Spain		
		Trzebicki 2010, Görlinger		
		2012b: NR		
- · · · ·				
Intervention		Comparator		
Intervention ROTEM-guided transfusion a	Ilgorithm	Comparator Standard of care		
Intervention ROTEM-guided transfusion of Trauma	Igorithm	Comparator Standard of care Trauma		
Intervention ROTEM-guided transfusion of Trauma Schöchl 2010: guidance of FC	, PCC, PLT	Comparator Standard of care Trauma Schöchl 2010: TRISS predictic	'n	
Intervention ROTEM-guided transfusion of Trauma Schöchl 2010: guidance of FC Schöchl 2011: FC, PCC	, PCC, PLT	Comparator Standard of care Trauma Schöchl 2010: TRISS predictic Schöchl 2011: FFP	n	
Intervention ROTEM-guided transfusion of Trauma Schöchl 2010: guidance of FC Schöchl 2011: FC, PCC Nienaber 2011: FC, PCC	Ilgorithm , PCC, PLT	Comparator Standard of care Trauma Schöchl 2010: TRISS predictic Schöchl 2011: FFP Nienaber 2011: FFP:RBC 1:1	n	
Intervention ROTEM-guided transfusion of Trauma Schöchl 2010: guidance of FC Schöchl 2011: FC, PCC Nienaber 2011: FC, PCC Görlinger 2012a: NR	Ilgorithm , PCC, PLT	Comparator Standard of care Trauma Schöchl 2010: TRISS predictic Schöchl 2011: FFP Nienaber 2011: FFP:RBC 1:1 Görlinger 2012a: NR	n	
Intervention ROTEM-guided transfusion of Trauma Schöchl 2010: guidance of FC Schöchl 2011: FC, PCC Nienaber 2011: FC, PCC Görlinger 2012a: NR Schaden 2012: NR	Ilgorithm , PCC, PLT	Comparator Standard of care Trauma Schöchl 2010: TRISS prediction Schöchl 2011: FFP Nienaber 2011: FFP:RBC 1:1 Görlinger 2012a: NR Schaden 2012: Clinician discret	etion	
Intervention ROTEM-guided transfusion of Trauma Schöchl 2010: guidance of FC Schöchl 2011: FC, PCC Nienaber 2011: FC, PCC Görlinger 2012a: NR Schaden 2012: NR Cardiac and aortic surgery	Ilgorithm , PCC, PLT	Comparator Standard of care Trauma Schöchl 2010: TRISS prediction Schöchl 2011: FFP Nienaber 2011: FFP:RBC 1:1 Görlinger 2012a: NR Schaden 2012: Clinician discret Cardiac and aortic surgery	etion	
Intervention ROTEM-guided transfusion of Trauma Schöchl 2010: guidance of FC Schöchl 2011: FC, PCC Nienaber 2011: FC, PCC Görlinger 2012a: NR Schaden 2012: NR Cardiac and aortic surgery Rahe-Meyer 2013: FC- guidan	Ilgorithm , PCC, PLT ce	Comparator Standard of care Trauma Schöchl 2010: TRISS prediction Schöchl 2011: FFP Nienaber 2011: FFP:RBC 1:1 Görlinger 2012a: NR Schaden 2012: Clinician discret Cardiac and aortic surgery Rahe-Meyer 2013: SoC with F	on etion FP and PLTs	
Intervention ROTEM-guided transfusion of Trauma Schöchl 2010: guidance of FC Schöchl 2011: FC, PCC Nienaber 2011: FC, PCC Görlinger 2012a: NR Schaden 2012: NR Cardiac and aortic surgery Rahe-Meyer 2013: FC- guidan Weber 2012: NR (with Multiple	Ilgorithm , PCC, PLT ce ate)	Comparator Standard of care Trauma Schöchl 2010: TRISS prediction Schöchl 2011: FFP Nienaber 2011: FFP:RBC 1:1 Görlinger 2012a: NR Schaden 2012: Clinician discret Cardiac and aortic surgery Rahe-Meyer 2013: SoC with F Weber 2012: Conventional test	on etion FP and PLTs sts	
Intervention ROTEM-guided transfusion of Trauma Schöchl 2010: guidance of FC Schöchl 2011: FC, PCC Nienaber 2011: FC, PCC Görlinger 2012a: NR Schaden 2012: NR Cardiac and aortic surgery Rahe-Meyer 2013: FC- guidan Weber 2012: NR (with Multiple Girdauskas 2010: (with Multiple)	, PCC, PLT ce ate)	Comparator Standard of care Trauma Schöchl 2010: TRISS prediction Schöchl 2011: FFP Nienaber 2011: FFP:RBC 1:1 Görlinger 2012a: NR Schaden 2012: Clinician discret Cardiac and aortic surgery Rahe-Meyer 2013: SoC with F Weber 2012: Conventional test Girdauskas 2010: Clinical judg	on etion FP and PLTs sts gement, use of protamine,	

STUDY DETAILS: Haas 2014	
Fassl 2013: NR	Fassl 2013: NR
Hanke 2012: NR	Hanke 2012: NR
Hvas 2012: NR	Hvas 2012: Clinical judgement
Görlinger 2011: NR	Görlinger 2011: NR
Romlin 2011: NR	Romlin 2011: NR
Rahe-Meyer 2009a:	Rahe-Meyer 2009a: SoC
FFP- or FC- guidance to targeted FIBTEM MCF of 22 mm	Rahe-Meyer 2009b: SoC
Rahe-Meyer 2009b:	Anderson 2006: RBC, FFP, PLT
FC- guidance to targeted FIBTEM MCF of 22 mm	
Anderson 2006: RBC, FFP, PLT	
Liver transplant	Liver transplant
Noval-Padillo 2010: allogenic blood products	Noval-Padillo 2010: allogenic blood products
Trzebicki 2010: blood products including TXA	Trzebicki 2010: blood products NOT including TXA
Görlinger 2012b: blood products	Görlinger 2012b: blood products
Population characteristics	

Trauma

Schaden 2012: RCT, 30 patients undergoing surgical excision of burn wounds

Schöchl 2010: Retrospective analysis of 131 severe trauma patients who receive >5 U PRBCs within 24hrs of arrival at emergency.

Schöchl 2011: 601 patients from German trauma registry matched with 80 controls from Austria Trauma centre. *

Nienaber 2011: 18 patients from German trauma registry matched with 18 controls from Innsbruck trauma database.^b Görlinger 2012a: Retrospective analysis of 5590 trauma patients before and after implementation of ROTEM-guided transfusion protocol

Cardiac and aortic surgery

Rahe-Meyer 2013: RCT in 61 patients undergoing aortic replacement surgery

Weber 2012: RCT in 100 patients undergoing complex cardiac surgery with diffuse bleeding after heparin reversal with protamine

Girdauskas 2010: RCT in 56 patients undergoing aortic surgery with hypothermic circulatory arrest

Fassl 2013: SC, retrospective cohort study in 194 patients undergoing elective and urgent cardiac surgery with hypothermic circulatory arrest

Hanke 2012: Cohort study with matched historical controls in 10 patients undergoing aortic arch replacement Hvas 2012: Cohort study with historical control in 1676 cardiac surgery patients

Görlinger 2011: Retrospective before and after cohort study in 3865 patients undergoing cardiac surgery

Romlin 2011: Cohort study with matched historical controls in 100 paediatric patients undergoing cardiac surgery

Rahe-Meyer 2009a: Cohort study (pilot) with historical controls in 57 patients undergoing elective aortic valve replacement

Rahe-Meyer 2009b: Cohort study (pilot) with historical controls in 18 patients undergoing thoracoabdominal aortic aneurysm

Anderson 2006: SC, retrospective before and after cohort in 990 patients undergoing cardiac surgery *Liver transplant*

Noval-Padillo 2010: Prospective before and after cohort study (pilot) in 79 patients undergoing liver transplant Trzebicki 2010: Retrospective before and after cohort study in 78 patients undergoing liver transplant.

Görlinger 2012b: Retrospective before and after cohort study in 5338 patients undergoing visceral surgery or liver transplant.

Postpartum haemorrhage

No comparative studies

Length of follow-up	Outcomes measured			
Literature search details not provided	Outcomes reported in studies			
INTERNAL VALIDITY				
Overall QUALITY of the systematic review (descriptive)				
Rating (AMSTAR): Critically low				

STUDY DETAILS: Haas 2014

Description: More than one critical flaw with or without non-critical weaknesses – the review has more than one critical flaw and *should not be relied on* to provide an accurate and comprehensive summary of the available studies. No description of literature search or study selection provided. The authors did not describe any formal quality assessment of included studies.

Risk of bias of included studies: The quality of the evidence was judged to be moderate, i.e. that further research is likely to have an important impact on the confidence in the estimate of effect and may change the estimate. The authors did not describe any formal quality assessment of included studies.

RESULTS:

RESCENS.				
Outcome No. patients (No. trials)	ROTEM n/N (%) Mean ± SD	Standard of care n/N (%) Mean ± SD	Risk estimate (95% Cl)	Statistical significance p-value Heterogeneity ^a I ² (p-value)
Trauma setting				
Mortality		(TRISS-predicted)		Favours ROTEM
N = 131 Schöchl 2010	NR (24.4%)	NR (33.7%)	NR	p = 0.032
(excluding 17 patients with TBI)	NR (14%)	NR (27.8%)	NR	p = 0.0018
N = 681 Schöchl 2011 ª	NR/601 (NR)	NR/80 (NR)	NR	No difference, NR
N = 36 Nienaber 2011 ^b	5/18 (13.9)	2/18 (11.1)	NR	No difference, <i>p</i> = 0.500
Allogenic blood products transfused	Cumulative (range)	Cumulative (range)		Favours ROTEM
N = 30				
Schaden 2012	3.0 (1.3—5.5)	9.0 (6.0—12.3)	NR	<i>p</i> = 0.002
RBC transfusion volume, units	Median (IQR)	Median (IQR)		Favours ROTEM
N = 36				
Nienaber 2011 ^b				
>0–6 h after admission	1 (0—3)	7.5 (4—12)	NR	p < 0.005
>24 h after admission	3 (0—5)	12.5 (8—20)	NR	p < 0.005
RBC transfusion volume, units	Units per year	Units per year		Favours ROTEM
N = 5590	000	1770		ND
Görlinger 2012a d	888	1332	33% reduction	
FFP transfusion volume, units	Cumulative (range)	Cumulative (range)		Favours ROTEM
Schaden 2012	0	5.0 (1.5—7.5)	NR	p < 0.001
FFP transfusion volume, units	Units per year	Units per year		Favours ROTEM
N = 5590				
Görlinger 2012a ^d	261	1221	79% reduction	NR
PLT transfusion volume, units	Units per year	Units per year		Favours ROTEM
N = 5590	20	07	GE% reduction	
Görlinger 2012a	29	82	65% reduction	
RBC transfusion need N = 681				Favours ROTEM
Schöchl 2011 ^a	NR (71%)	NR (97%)	NR	p < 0.001
PLT transfusion avoided				Favours ROTEM
N = 681				
Schöchl 2011 ^a	NR (56%)	NR (91%)	NR	p < 0.001
Multiple organ failure				Favours ROTEM

STUDY DETAILS: Haas 2	STUDY DETAILS: Haas 2014					
N = 36						
Nienaber 2011	3/18 (16.7)	11/18 (61.1)	NR	p = 0.015		
Cardiac and aortic surger	y					
Mortality, 6 month				Favours ROTEM		
N = 100						
Weber 2012	NR/NR (4)	NR/NR (20)	NR	p = 0.013		
24 h transfusion volume,	Median (IQR)	Median (IQR)		Favours ROTEM		
	2 (ND)	12 (NR)	ND	[00.0 < 0		
N = 61 Rahe-Meyer 2013	9 (2—30)	16 (9—23)	NR	NR		
N = 56 Girdauskas 2010	- ()					
RBC transfusion volume,	Mean ± SD (n)	Mean ± SD (n)	MD	Favours ROTEM		
units						
	4.1 ± NR (NR)	5.1 ± NR (NR)	1.0 ± NR	p = 0.04		
N = 1676 HVas 2012 $N = 57 Data Mayor$						
2009a	$8.2 \pm NR$ (5)	8.5 ± NR (42)				
FFP vs control	25 + NR(6)	16 4 + NR (12)	NR	NR		
FC vs control	2.0 _ 111((0)					
N = 18 Rahe-Meyer						
PBC transfusion volume	Median (IOD)	Median (IOD)		Eavours DOTEM		
units						
N = 100						
Weber 2012	3 (2—6)	5 (4—9)		p < 0.001		
FFP transfusion volume,	Mean ± SD (n)	Mean ± SD (n)		Favours ROTEM		
units						
N = 10		92+66(5)	NR	p = 0.038		
	$1.0 \pm 2.2 (3)$					
units				Favours ROTEM		
N = 100						
Weber 2012	0 (0—3)	5 (3—8)	NR	p < 0.001		
PLT transfusion volume,	Median (IQR)	Median (IQR)		Favours ROTEM		
units						
N = 100	2 (0 2)					
Weber 2012	2 (0—2)	2 (0—5)	NR	p = 0.01		
transfusion (≥ 10 U RBCs)				Favours ROTEM		
N = 10 Hanke 2012	NR	NR	NR	NR		
N = 56 Girdauskas 2010	NR	NR	OR 0.45 (0.2, 0.9)	p = 0.03		
N = 3865 Görlinger 2011	NR/2147 (1.26)	NR/1718 (2.5)	NR	p = 0.0057		
Allogenic transfusion				Favours ROTEM		
N = 100 Romlin 2011	32/50 (64)	46/50 (92)	NR	p < 0.001		
N = 3865 Görlinger 2011	NR/2147 (42.2)	NR/1718 (52.5)	NR	p < 0.0001		
RBC transfusion						
N = 990 Anderson	NR (53)	NR (60)	NR	NR		
N = 194 Fassl 2013	NR/153 (41)	NR/41 (78)		Favours R01EM, p < 0.001		
N = 1676 Hvas 2012	NR/NR (55)	NR/NR (100)		No difference, <i>p</i> = 0.49		
N = 61 Rahe-Meyer 2013	NR/2147 (40.4)	NR/1718 (49.7)	NR	NR		
N = 3865 Görlinger 2011				p < 0.0001		

STUDY DETAILS: Haas 2	2014			
FFP transfusion N = 990 Anderson 2006 N = 194 Fassl 2013 N = 3865 Görlinger 2011	NR (12) NR/153 (22) NR/2147 (1.1)	NR (17) NR/41 (71) NR/1718 (19.4)	NR NR NR	NR p < 0.001 p < 0.0001
PLT transfusion N = 990 Anderson 2006 N = 194 Fassl 2013 N = 3865 Görlinger 2011	NR (11) NR/153 (11) NR/2147 (10.1)	NR (16) NR/41 (16) NR/1718 (13)	NR NR NR	NR p = 0.028 p = 0.0041
FC transfusion need N = 1676 Hvas 2012	NR/865 (11.6)	NR/811 (3.6)	NR	Favours SoC p < 0.001
Composite TEs N = 3865 Görlinger 2011	NR/2147 (1.77)	NR/1718 (3.19)	NR	<i>p</i> = 0.011
Composite AEs (ARF, sepsis, TE, reaction) N = 100 Weber 2012	NR/NR (8)	NR/NR (38)	NR	Pavours ROTEM
Postoperative mechanical ventilation time, min	Median (IQR)	Median (IQR)		Favours ROTEM
N = 100 Weber 2012	316 (230—513)	827 (440—2835)	NR	p < 0.001
Length of ICU stay, hrs N = 100	Median (IQR)	Median (IQR)		Favours ROTEM
Weber 2012	21 (18—31)	24 (20—87)	NR	<i>p</i> = 0.019
Liver transplant				
RBC transfusion volume, units N = 78	Mean ± SD (n) 4.1 ± 4.76 (39)	Mean ± SD (n) 5.53 ± 4.89 (39)	NR	No significant difference
RBC transfusion volume,	Units per patient	units per patient		p = 0.217 Favours ROTEM
N = 79 Noval-Padillo 2010	3.9	8.4	53% reduction	NR
RBC transfusion volume, units N = 5338	Units per year	Units per year	62% reduction	Favours ROTEM
Görlinger 2012b		5-5-	02/0100000000	
FFP transfusion volume, units	Mean ± SD (n)	Mean ± SD (n)	MD	Favours ROTEM
N = 78 Trzebicki 2010 °	10.07 ± 7.47 (39)	13.15 ± 6.62 (39)	NR	p = 0.06
FFP transfusion volume, units	Units per patient	Units per patient	GEO/ roduction	Favours ROTEM
Noval-Padillo 2010	1.9	0.C	os% reduction	NR
FFP transfusion volume, units	Units per year	Units per year		Favours ROTEM

STUDY DETAILS: Haas 2014							
N = 5338	223	4465	95% reduction	NR			
Görlinger 2012b₫							
PLT transfusion volume, mL	Mean ± SD (n)	Mean ± SD (n)		Favours SoC			
N = 78 Trzebicki 2010 de	168 ± NR (39)	89 ± NR (39)	NR	p = 0.09			
DI T transfusion volume	Units per patient	Units per patient		Eavours DOTEM			
units		onits per patient					
N = 79	0.7	1.5	50% reduction	NR			
Noval-Padillo 2010							
PLT transfusion volume, units	Units per year	Units per year		Favours ROTEM			
N = 5338	149	433	66% reduction	NR			
Görlinger 2012b₫							
FC required, g N = 5338	g per year	g per year		Favours SoC			
Görlinger 2012b ₫	745	68	9.9-fold increase	NR			
PCC required, IU N = 5338	IU per year	IU per year		Favours SoC			
Görlinger 2012b₫	238 500	65 500	2.6-fold increase	NR			
Transfusion avoided N = 79							
Noval-Padillo 2010	4/20 (20)	2/59 (3.5)	NR	NR			
Need for massive				Favours ROTEM			
transfusion (\geq 10 U RBCs)							
N = 5338				0.0001			
Görlinger 2012b ^d	NR (0.88)	NR (2.56)	NR	p < 0.0001			
RBC transfusion need							
N = 79				ND			
	13/20 (65)	57/59 (97)	NR	NR			
N =79							
Noval-Padillo 2010	8/20 (40)	47/59 (80)	NR	NR			
PLT transfusion need							
N = 157 (2 RCTs)							
N = 79 Noval-Padillo	10/20 (50)	40/59 (68)	NR	NR			
2010 ^d	16/39 (41)	11/39 (28)	NR	p = 0.23			
N = 78 Trzebicki 2010 ^{d,e}							
FC transfusion need							
N = 79							
Noval-Padillo 2010	9/20 (45)	59/59 (100)	NR	NR			
Generalisability (relevance of the study population to the Guidelines target population)							
Applicability (relevance of the evidence to the Australian population with some caveats							
The evidence is probably applicable to the Australian healthcare context with some caveats							
Additional comments							
Authors conclusions:							

Traumatic coagulopathy is typically combined with the need to restore fibrinogen levels. This need can be ideally detected and guided by ROTEM® analysis.

STUDY DETAILS: Haas 2014

Clinical setting	Strength of recommenda tion	Quality of evidence	Comments		
Severe trauma	Strong	Moderate	Only one RCT demonstrated reduction in allogeneic blood transfusion using a ROTEM®-based algorithm. Further research to define safe and reliable thresholds for the ROTEM® to initiate coagulation therapy is urgently needed		
Cardiovascular surgery	Strong	High	Three RCTs demonstrated efficacy in reducing blood loss and transfusion needs, however further research is warranted		
Liver transplant	Strong	Low	Observational studies consistently demonstrate a reduction on blood product use		
Postpartum haemorrhage	Weak	Low	Observational studies show the important of fast assessment for changes in haemostasis but studies providing safe thresholds are urgently needed		

List of included studies:

Trauma: Schöchl 2010, Schöchl 2011, Görlinger 2012a, Nienaber 2011, Schaden 2012

Cardiac: Anderson 2006, Fassl 2013, Hvas 2012, Rahe-Meyer 2009a, Rahe-Meyer 2009b, Hanke 2012, Rahe-Meyer 2013, Girdauskas 2010, Romlin 2011, Görlinger 2011, Weber 2012

Liver transplant: Noval-Padillo 2010, Trzebicki 2010, Görlinger 2012b

- ARF, acute renal failure; CI, confidence interval; FC, fibrinogen concentrate; FFP, fresh frozen plasma; g, gram; RCT, randomised controlled trial; IQR, interquartile rage; IU, international units; NR, not reported; PCC, prothrombin complex concentrate; RBC, red blood cell; ROTEM, rotational thromboelastometry; SD, standard deviation; SoC, standard of care; TEG, thromboelastography; TXA, tranexamic acid
- a. Schöchl 2011 compared ROTEM-guided administration of FC and PCC with standard care guided transfusion in patients receiving >2 units FFP (no FC or PCC). Patients in intervention group received median 6 g FC (range 0—15) and 1200 IU PCC (range 0—6600) and those in the comparator group received median 6 Units FFP (range 2—51).
- b. Neinaber 2011 compared ROTEM-guided administration of FC and PCC with standard care guided transfusion of 1:1 FFP:RBC ratio. c. Multivariate regression analysis

d. Data from primary study.

e. Three patients in the intervention group (7.7%) had severe fibrinolysis and were treated with TXA.

STUDY DETAILS: Corredor 2015

Citation

Corredor, C., Wasowicz, M., Karkouti, K., & Sharma, V. (2015). The role of point-of-care platelet function testing in predicting postoperative bleeding following cardiac surgery: A systematic review and meta-analysis. Anaesthesia, 70(6), 715-731. doi:http://dx.doi.org/10.1111/anae.13083

Affiliation/Source of funds

St. George's Hospital, London, UK; Toronto General Hospital, Toronto, Ontario, Canada

The authors declared no conflicts of interest or external sources of funding.

Study design	Level of evidence	Location	Setting				
Systematic review and meta-analysis of RCTs (observational studies not included)		Countries of included studies not reported	Surgical (cardiac)				
Intervention		Comparator					
thromboelastography (TEG) or rotational thromboelastometry (ROTEM) algorithm to guide transfusion (with or without other point-of-care platelet function tests)		Standard of care					
Population characteristics							
Patients undergoing cardiac surgery							
Shore-Lesserson 1999: high risk cardiac surgery - moderate to high risk of microvascular bleeding (valve replacement, CABG, cardiac reoperation, or thoracic aortic replacement)							

Royston 2001: high-risk cardiac surgery (transplant, Ross procedure, multiple valve + CABG)
STUDY DETAILS: Corredor 2015

Avidan 2004: elective CABG with CPB. Excessive bleeding defined as any patient who continued to bleed excessively (> 100 mL/hour), had no evidence of a haemostatic abnormality or had failed to respond to the treatment. Ak 2009: Elective CABG

Westbrook 2009: cardiac surgery, ~10% in each group with urgent presentation.

Girdauskas 2010: high risk aortic surgery including urgent and emergency surgery (25 with acute type A dissection) with hypothermic circulatory arrest.

Nuttal 2001: abnormal microvascular bleeding after CPB, defined as diffuse oozing with no visible clot at inspection of the operative field performed by the surgeon and the anaesthetist after CBP.

Weber 2012: complex cardiothoracic surgery (combined CABG and valve surgery, double or triple valve procedures, aortic surgery or redo surgery) with diffuse bleeding from capillary beds at wound surfaces or intraoperative or postoperative (during the first 24 postoperative hours) blood loss exceeding 250 mL/hour or 50 mL/10 min. Agarwal 2015: Emergency and urgent CABG

Length of follow-up	Outcomes measured
Citations published between database inception and	Bleeding after cardiac surgery at follow up
October 2014.	Proportion of patients receiving packed RBCs
Included studies published between 1999 and 2014.	Proportion of patients receiving platelets
	Mortality

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Moderate

Description: More than one non-critical weakness – the systematic review has more than one weakness but no critical flaws. It *may* provide an accurate summary of the results of the available studies that were included in the review.

Risk of bias of included studies: The overall risk of bias for three included studies (Girdauska 2010; Weber 2012; Agarwal 2014) were judged by the review authors to be high, as they received a rating of high risk on at least one domain. Shore-Lesserson 1999 was judged to be of low risk of bias. The remaining two studies (Avidan 2004, Ak 2009) were judged as having an unclear risk of bias. The domains or reasons that resulted in these assessments were not provided.

RESULTS:

		1		
Outcome	TEG/ROTEM	SoC	Risk estimate	Statistical significance
No. patients	n/N (%)	n/N (%)	(95% CI)	<i>p</i> -value
(No. trials)	Mean ± SD	Mean ± SD		Heterogeneity ^a
				l² (p-value)
TEG/ROTEM versus stand	ard of care			
Mortality at longest	NR	NR	RR 0.66 (0.31, 1.39)	No significant difference
follow-up				p = 0.27
N = 749 (6 studies)				
Shore-Lesserson 1999				
Ak 2009				
Girdauskas 2010				
Royston 2001				
Weber 2012				
Agarwal 2015 *	5/84	4/81		*data from primary study
Proportion of patients	NR	NR	RR 0.86 (0.79, 0.94)	Favours TEG/ROTEM
receiving packed RBC				p = 0.001
N = 836 (6 studies)				No heterogeneity
				l² = 11% (p = 0.34)
TEG/ROTEM only	NR	NR	0.88 (0.75, 1.03)	
TEG/ROTEM + PFT	NR	NR	0.84 (0.73, 0.97)	Test for subgroup
				differences:
TEG/ROTEM only	Log[RR] (SE)			² = 0%
Ak 2009	–0.1719 (0.1339)		0.84 (0.64, 1.09)	No heterogeneity detected

STUDY DETAILS: Corredor 2015

STODT DETAILS. COTTet				
Girdauskas 2010	-0.046 (0.0847)		0.96 (0.81, 1.13)	
Shore-Lesserson 1999	-0.3624 (0.1992)		0.70 (0.75, 1.03)	
TEG/ROTEM + PFT				
Agarwal 2015	–0.3425 (0.1303)		0.71 (0.55, 0.92)	
Avidan 2004	-0.0305 (0.136)		0.97 (0.74, 1.27)	
Weber 2012	-0.1543 (0.0647)		0.86 (0.75, 0.97)	
Proportion of patients	NR	NR	RR 0.42 (0.30, 0.59)	Favours TEG/ROTEM
receiving FFP				p < 0.00001
N = NR				Heterogeneity NR
(studies NR)				
Platelet transfusions	NR	NR	RR 0.81 (0.55, 1.18)	No significant difference
N = NR				p = 0.27
(NR studies)				
TEG/ROTEM only			0.59 (0.44, 0.80)	p = 0.007, Favours TEG/ROTEM
TEG/ROTEM + PFT			1.16 (0.73, 1.85)	p = 0.52, No difference

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Guidelines population with some caveats

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats

Additional comments

Authors conclusions:

The systematic review and meta-analysis found that point-of-care platelet function tests can indeed detect platelet dysfunction in the peri-operative setting in cardiac surgical patients. In addition, their incorporation into a blood transfusion management algorithm is associated with reduced blood loss and transfusion requirements.

Viscoelastic methods (TEG and ROTEM) alone appear to have limited ability for prediction of blood loss and transfusion requirements after cardiac surgery. This limitation is particularly apparent in patients receiving antiplatelet medications, as conventional viscoelastic methods are unable to detect the effect of antiplatelet medications on platelet function.

List of included studies:

Agarwal 2015, Weber 2012, Girdauskas 2010, Ak 2009, Westbrook 2009, Avidan 2004, Nuttall 2001, Royston 2001, Shore-Lesserson 1999

Cl, confidence interval; ITT, intention-to-treat; MD, mean difference; NR, not reported; PFT, platelet function test; RCT, randomised controlled trial; ROTEM, rotational thromboelastometry; RBC, red blood cell; RR, relative risk; SD, standard deviation TEG, thromboelastography

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Deppe 2016			
Citation			
Deppe, A. C., Weber, C., Zimmermann, J., Kuhn, E. W., Slottosch, I., Liakopoulos, O. J., Choi, Y. H., & Wahlers, T. (2016). Point-of-care thromboelastography/thromboelastometry-based coagulation management in cardiac surgery: A meta-analysis of 8332 patients. <i>Journal of Surgical Research</i> , 203(2), 424-433. doi:http://dx.doi.org/10.1016/j.jss.2016.03.008			
Affiliation/Source of funds			
<i>Author affiliations</i> : University of Cologne, Germany The authors declared no conflicts of interest and reported no funding was received.			
Study design	Level of evidence	Location	Setting
Systematic review and meta-analysis of RCTs and observational studies	1 /111	Countries of included studies not reported	Cardiac (Surgery)

STUDY DETAILS: Deppe 2016					
Intervention			Comparator		
Transfusion strategy	usion strategy guided by TEG/ROTEM		Standard of care (transfusion regimen guided by standard laboratory tests)		
Population characte	ristics				
Patients with excessi	ve bleeding after cardi	ac surgery			
Included 17 studies (9	RCTs, 8 observational	studies)			
29.8% female, 27.2% c	liabetes, 36.2% hyperte	ension, 20.8% CC	PD		
Length of follow-up			Outcomes measured		
Citations published b	etween 1966 and Dec	31 2014	mortality		
			re-exploration		
			thromboembolic ever	ey injury, nts)	, cerebrovascular accident,
			transfusion requireme	ents	
			blood loss		
INTERNAL VALIDI	TY				
Overall QUALITY of t	he systematic review	(descriptive)			
Rating (AMSTAR): Mo	oderate				
Description: More tha	an one non-critical wea	akness – the syst	ematic review has mor	e than o	ne weakness but no critical
flaws. It may provide a	in accurate summary o	of the results of i	the available studies that	at were I	ncluded in the review.
he overall risk of hias	for included studies w	as judged by th	a review authors to be h	aigh (ass	essed with ladad [DCTs]
and Downs and Blac	k score [Coh]).	as judged by th		ligit (ass	
Eleven studies were r	ated as poor, whereas	the remaining s	ix studies were rated as	s being c	of good quality. There were
concerns with patien	t selection bias due to	significant diffe	rences in baseline char	acteristic	cs of comparator groups.
RESULTS:					
Outcome	[intervention]	[comparator]	Risk estimate	e (9 5%	Statistical significance
No. patients	n/N (%)	n/N (%)	CI)		<i>p</i> -value
	Mean I SD	Mean I SD			Heterogeneity * l² (n-value)
POCT versus Stando	ırd laboratorv tests				
Mortality, all cause	163/NR (5.4)	156/NR (5.7)	OR 0.92 (0.74,	1.16)	No significant difference
N = 5899				,	p = 0.5193
(6 RCTs, 5 Coh)					Mild heterogeneity
					I² = 14% (p = 0.4520)
Morbidity, CVA	12/NR (0.5)	18/NR (1.0)	OR 0.64 (0.31, 1	1.30)	No significant difference
N = 4054					p = 0.2841
(2 RCTs, 3 Coh)					No significant
					neterogeneity $l^2 = 0.017(5)$
Marbidity aquita					1 ⁻ = 0% (β = 0.1343)
kidney injury	142/NR (0.0)		OR 0.77 (0.61, 0	J.90j	Envolure intervention
					Favours intervention $p = 0.0403$
N = 4263		100,111 (7.0)			Favours intervention p = 0.0403 No significant
N = 4263 (3 RCTs, 2 Coh)					Favours intervention p = 0.0403 No significant heterogeneity
N = 4263 (3 RCTs, 2 Coh)					Favours intervention p = 0.0403 No significant heterogeneity $l^2 = 0\% (p = 0.0278)$
N = 4263 (3 RCTs, 2 Coh) Morbidity, acute	NR	NR	OR 0.54 (0.27,	1.06)	Favours intervention p = 0.0403 No significant heterogeneity $l^2 = 0\% (p = 0.0278)$ No significant difference
N = 4263 (3 RCTs, 2 Coh) Morbidity, acute kidney injury	NR	NR	OR 0.54 (0.27,	1.06)	Favours intervention p = 0.0403 No significant heterogeneity $l^2 = 0\% (p = 0.0278)$ No significant difference p = 0.1001
N = 4263 (3 RCTs, 2 Coh) Morbidity, acute kidney injury N = 380	NR	NR	OR 0.54 (0.27,	1.06)	Favours intervention p = 0.0403 No significant heterogeneity $l^2 = 0\% (p = 0.0278)$ No significant difference p = 0.1001 Heterogeneity NR
N = 4263 (3 RCTs, 2 Coh) Morbidity, acute kidney injury N = 380 (RCTs only)	NR	NR	OR 0.54 (0.27,	1.06)	Favours intervention p = 0.0403 No significant heterogeneity $l^2 = 0\% (p = 0.0278)$ No significant difference p = 0.1001 Heterogeneity NR
N = 4263 (3 RCTs, 2 Coh) Morbidity, acute kidney injury N = 380 (RCTs only) Morbidity, TE	NR 28/NR (1.3)	NR 51/NR (2.9)	OR 0.54 (0.27, OR 0.44 (0.28,	0.70)	Favours intervention p = 0.0403 No significant heterogeneity $l^2 = 0\% (p = 0.0278)$ No significant difference p = 0.1001 Heterogeneity NR Favours intervention p = 0.0006
N = 4263 (3 RCTs, 2 Coh) Morbidity, acute kidney injury N = 380 (RCTs only) Morbidity, TE N = 3975 (NB studies)	NR 28/NR (1.3)	NR 51/NR (2.9)	OR 0.54 (0.27, 7 OR 0.44 (0.28,	0.70)	Favours intervention p = 0.0403 No significant heterogeneity $l^2 = 0\% (p = 0.0278)$ No significant difference p = 0.1001 Heterogeneity NR Favours intervention p = 0.0006

STUDY DETAILS: D	eppe 2016			
				No significant
				$l^2 = 0\% (p = 0.0005)$
Required transfusion, any N = 5223 (NR studies)	1426/NR (49.6)	1413/NR (60.2)	OR 0.63 (0.56, 0.71) NNT 9.4	Favours intervention p = 0.0001 Mild heterogeneity $l^2 = 28\%$ ($p < 0.0001$)
Required transfusion any N = NR (RCTs only)	NR	NR	OR 0.37 (0.21, 0.68) NNT 5.6	Favours intervention p = 0.0018
RBC transfusion N = 6589 (NR studies)	1763/NR (49.4)	1789/NR (59.2)	OR 0.63 (0.50, 0.78) NNT 9.4	Favours intervention ρ < 0.0001 Mild heterogeneity $l^2 = 50\%$ (ρ < 0.0001)
FFP transfusion N = 6589 (NR studies)	312/NR (8.7)	724/NR (23.9)	OR 0.31 (0.13, 0.74) NNT 6.6	Favours intervention p = 0.0001 Substantial heterogeneity $l^2 = 95\% (p < 0.0001)$
Platelet transfusion N = 6589 (NR studies)	694/NR (19.5)	655/NR (21.7)	OR 0.62 (0.42, 0.92)	Favours intervention p = 0.0187 Substantial heterogeneity $l^2 = 80\%$ ($p = 0.0292$)

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population with few caveats

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats

Additional comments

Authors conclusions

Pooled effects from nine RCTs and eight observational studies demonstrates that POCT-based coagulation management decreases the number of patients with allogeneic blood product exposure. Furthermore, it results in significantly lower re-exploration rates, decreases the incidence of postoperative AKI and thromboembolic events in cardiac surgery patients. Despite these findings, there were no significant differences in mortality or ICU and hospital stay.

List of included studies

RCTs: Ak 2009, Avidan 2004, Girdauskas 2010, Kultufan Turan 2006, Nuttall 2001, Royston 2001, Shore-Lesserson 1999, Weber 2012, Westbrook 2009

Prospective cohort: Sun 2014, Fassel 2013, Spalding 2007

Retrospective cohort: Anderson 2006, Görlinger 2011, Hanke 2012, Rahe-Meyer 2009, Spiess 1995

AKI, acute kidney injury; CVA, cerebrovascular accident; CI, confidence interval; FFP, fresh frozen plasma; PRBC, packed red blood cells; ITT, intention-to-treat; MD, mean difference; NR, not reported; OR, odds ratio; RCT, randomised controlled trial; ROTEM, rotational thromboelastometry; SD, standard deviation ; TEG, thromboelastography; TE, thromboembolic events

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet
 > 0.1 and I2 < 25%; (ii) mild heterogeneity if I2 < 25%; moderate heterogeneity if I2 between 25–50%; substantial heterogeneity I2 > 50%.

STUDY DETAILS: Saner 2016

Citation

Saner, F. H., & Kirchner, C. (2016). Monitoring and Treatment of Coagulation Disorders in End-Stage Liver Disease. Visc Med, 32(4), 241-248. doi:10.1159/000446304

STUDY DETAILS: Saner 2016

Affiliation/Source of funds

Details on funding not provided.

Author conflicts of interest:

FH Saner: CSL Behring - Honoraria from speakers bureau; TEM International - research grant

Study design	Level of evidence	Location	Setting
Selective literature search and narrative review	Ш	Countries of included studies not provided	End stage liver disease
		Wang 2010: Taiwan	
		De Pietri 2010: Italy	
		Leon-Justel 2015: Spain	
Intervention		Comparator	
TEG and/or ROTEM		Standard of care	
		(standard laboratory tests)	

Population characteristics

Patients with end stage liver disease

Wang 2010: those scheduled for orthotopic liver transplant

De Pietri 2010: those scheduled for invasive surgical interventions including laparoscopy, biopsy, resection (INR \ge 1.8, PLT count \le 50/nL)

Leon-Justel 2015: Cohort study in 200 patients scheduled for liver transplant before and after implementation of ROTEM-guided protocol

Bedreli 2016: Patients with advanced cirrhosis and coagulopathy (INR > 1.5, PLT count \leq 50/nL)

Length of follow-up	Outcomes measured
Single database (PubMed). Search dates not provided.	Mortality
	Transfusion requirements
	Morbidity

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Critically low

Description: More than one critical flaw with or without non-critical weaknesses – the review has more than one critical flaw and *should not be relied on* to provide an accurate and comprehensive summary of the available studies. A comprehensive literature review was not conducted.

Risk of bias of included studies: Quality assessment was not carried out on included studies.

RESULTS: Outcome TEG and/or Standard of care **Risk estimate** Statistical significance ROTEM n/N (%) (95% CI) No. patients n/N (%) p-value Mean ± SD (No. trials) Mean ± SD Heterogeneity ^a I² (p-value) No significant difference Mortality N = 88 (2 RCTs) Wang 2010 NR NR NR NR De Pietri 2016 ^b 7/30 (23.3) NR p = 0.880 (K-M log-rank) 8/30 (26.6) Survival at 1 year 79/100 (79) 81/100 (81) No significant difference N = 200 (1 Coh) p = 0.663Leon-Justel 2015 Diff RBC transfusion volume, Total (median) Total (median) No significant difference units N = 60 (1 RCT)p = 0.396 (1) ° 8 (2) ^c De Pietri 2016 ^b RBC transfusion volume, Median (IQR) Median (IQR) Diff Favours ROTEM units per patient p < 0.0001N = 200 (1 Coh)

STUDY DETAILS: Saner 2016				
Leon-Justel 2015 d	3 (0–5)	5 (2–8)		
FFP transfusion volume, units	mean ± SD (n)	mean ± SD (n)		Favours TEG/ROTEM
N = 28 (1 RCT) Wang 2010	21.5 ± NR (NR)	12.8 ± SD (NR)		NR
FFP transfusion volume, units per patient N = 200 (1 Coh)	Median (IQR)	Median (IQR)	Diff	Favours ROTEM
Leon-Justel 2015 d	0 (0–0)	2 (0–4)		p < 0.0001
FFP transfusion volume, mL	Total	Total		Favours TEG/ROTEM
N = 60 (1 RCT)				
De Pietri 2016 ^b	4000	11050		p = 0.002
Low risk High risk	0	6500		p < 0.0001
FFP transfusion volume, mL N = 60 (1 RCT)	Infused per patient (only FFP)	Infused per patient (only FFP)		Favours TEG/ROTEM
De Pietri 2016 ^b	0	895 ± 129		p < 0.0001
Low risk High risk	0	920 ± 303		<i>p</i> = 0.002
FFP transfusion volume, mL N = 60 (1 RCT)	Infused per patient (receiving FFP+PLT)	Infused per patient (receiving FFP+PLT)		
De Pietri 2016 ^b		600 ± 141		p = 0.099
Low risk High risk	1333 ± 585 0	950 ± 212		p = 0.21
PLT transfusion volume, units N = 60 (1 RCT)	Total	Total		Favours TEG/ROTEM
De Pietri 2016 ^b	22	28		p = 0.046
Low risk High risk	6	78		p = 0.001
PLT transfusion volume, units per patient N = 200 (1 Coh)	Median (IQR)	Median (IQR)	Diff	Favours ROTEM p < 0.0001
Leon-Justel 2015 d	O (O–1)	1 (0–4)		
PLT transfusion volume, mL	Infused per	Infused per patient		
N = 60 (1 RCT)	patient (only PLT)	(only FFP)		
De Pietri 2016 ^b				p = 0.406, No difference
Low risk	225 ± 35	263 ± 57		p < 0.0001, Favours
High risk	11 ± 45			
N = 60 (1 RCT) De Pietri 2016 ^b	patient (receiving FFP+PLT)	(receiving FFP+PLT)		Favours IEG/ROTEM
Low risk		300		p = 0.048
High risk	300 ± 10 0	325 ± 35		NR
FC transfusion volume, g per patient N = 200 (1 Cob)	mean ± SD (n)	mean ± SD (n)	Diff	Favours SoC
Leon-Justel 2015 d	1.13 ± 1.44	0.48 ± 1.28		<i>p</i> = 0.001
	1	1	1	1

STUDY DETAILS: Saner 2	016			
At least one blood component (FFP, and/or PLT) N = 60 (1 RCT) De Pietri 2016 ^b	5/30 (16.7%)	30/30 (100%)	NR	Favours TEG/ROTEM p < 0.0001
Transfusion avoided N = 200 (1 Coh) Leon-Justel 2015 ₫	24/100 (24)	5/100 (5)		Favours TEG/ROTEM ρ < 0.0001
Need for massive transfusion (> 10U RBCs) N = 200 (1 Coh) Leon-Justel 2015 d	2/100 (2)	13/100 (13)		Favours TEG/ROTEM p = 0.005
RBC transfusion, post procedure N = 60 (1 RCT) De Pietri 2016 ^b	4/30 (13.3)	4/30 (13.3)		No significant difference p = 0.718
FFP only N = 60 (1 RCT) De Pietri 2016 ^b	0/30	16/30 (53.3)	NR	Favours TEG/ROTEM p < 0.0001
PLT only N = 60 (1 RCT) De Pietri 2016 ^b	2/30 (6.7)	10/30 (33.3)	NR	Favours TEG/ROTEM p = 0.009
Both FFP & PLT N = 60 (1 RCT) De Pietri 2016 ^b	3/30 (10)	4/30 (13.3)	NR	No significant difference NR
Clinically significant bleeding N = 60 (1 RCT) De Pietri 2016 ^b	0/30	1/30 (3.3)		No significant difference p = 0.313
Transfusion associated allergic reaction N = 60 (1 RCT) De Pietri 2016 ^b	0/30	1/30 (3.3)		No significant difference p = 0.313
Acute kidney injury N = 200 (1 Coh) Leon-Justel 2015	2/100 (2)	17/100 (17)		Favours ROTEM p = 0.001
Reoperation due to bleeding N = 200 (1 Coh) Leon-Justel 2015	5/100 (5)	13/100 (13)		Favours ROTEM ρ = 0.048
EXTERNAL VALIDITY			·	
Generalisability (relevance	of the study populat	ion to the Guidelines t	arget population)
The evidence is directly gene	eralisable to the Austr	alian population with so	ome caveats	
Applicability (relevance of t	he evidence to the A	Australian health care	system)	
The evidence is probably app	plicable to the Austral	ian healthcare context	with some caveat	S
Additional comments				
Authors conclusions: Coagulation management should be based on VET analysis because this kind of coagulation analysis reflects coagulation dynamics better, enables a faster reaction to an imbalance in the coagulation system, and is the gold standard for detecting fibrinolysis. List of relevant included studies:				

STUDY DETAILS: Saner 2016

Wang 2010, De Pietri 2016, Leon-Justel 2015

Coh, cohort; CI, confidence interval; ESLD, end-stage liver disease; FFP. fresh frozen plasma; INR, international normalized ratio; RBC, red blood cells; PCC, prothrombin complex concentrate; PC platelet concentrate; RBC, red blood cell; RCT, randomised controlled trial; ROTEM, rotational thromboelastometry; SD, standard deviation; SLT, standard laboratory tests; TEG, thromboelastography; VET, viscoelastic test

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

b. Data sourced from primary study. Low risk procedure defined as bleeding probability lower than 3%, high risk procedure defined as bleeding probability exceeding 3%.

c. related to anaemia not overt bleeding. An additional 2 units related to bleeding episode administered in the SoC group. d. Data sourced from primary study.

STUDY DETAILS: Wikkelso 2016

Citation

Wikkelso, A., Wetterslev, J., Moller, A.M., et al. 2016. Thromboelastography (TEG) or thromboelastometry (ROTEM) to monitor haemostatic treatment versus usual care in adults or children with bleeding. *Cochrane Database of Systematic Reviews*, 2016 (8) (no pagination).

Wikkelso, A., Wetterslev, J., Moller, A. M., & Afshari, A. (2017). Thromboelastography (TEG) or rotational thromboelastometry (ROTEM) to monitor haemostatic treatment in bleeding patients: a systematic review with meta-analysis and trial sequential analysis. *Anaesthesia*, 72(4), 519-531. doi:http://dx.doi.org/10.1111/anae.13765

Affiliation/Source of funds

Supported by Cochrane Anaesthesia, Critical and Emergency Care Review Group (ACE), Denmark.

Author affiliations: University of Copenhagen, Denmark

Conflicts of interest: AW, AA, and MM have received product, but no financial support, from company for an RCT investigating fibrinogen concentrate in postpartum haemorrhage with TEG used as haemostatic monitoring (trial not part of this review); JW is a member of Trial Sequential Analysis (TSA) at Copenhagen Trial Unit developing and programming TSA.

Study design	Level of evidence	Location	Setting	
Systematic review and	Levell	Ak 2009: Turkey	Single centre, University	
meta-analysis of RCTs		Avidan 2004: UK	hospital/ hospital	
		Cui 2010: China		
		Girdauskas 2010: Germany		
		Kempfert 2011: Germany		
		Kultufan Turan 2006:		
		Turkey		
		Nakayama 2015: Japan		
		NCT00772239: France		
		Nuttal 2001: USA		
		Paniagua 2011: Spain		
		Rauter 2007: Austria		
		Royston 2001: UK		
		Schaden 2012: Austria		
		Shore-Lesserson 1999: USA		
		Wang 2010: Taiwan		
		Weber 2012: Germany		
		Westbrook 2009: Australia		
Intervention	'	Comparator		
TEG guided transfusion:		Clinical judgement or usual treatment:		
Ak 2009, Cui 2010, Kultufan Turan 2006, Royston 2001,		Ak 2009, Cui 2010, Girdauskas 2010, Kultufan Turan 2006,		
Shore-Lesserson 1999, Wang 2010		NCT00772239, Nuttal 2001, Rauter 2007, Royston 2001,		
TEG guided transfusion with platelet function analysis:		Schaden 2012, Shore-Lessers	on 1999, Westbrook 2009	
Avidan 2004, Westbrook 200	99			
TEG guided transfusion with	other laboratory tests:			
Nuttal 2001				

STUDY DETAILS: Wikkelso 2016				
ROTEM guided transfusion:	Predefined algorithm based on standard laboratory test-			
Girdauskas 2010, Kempfert 2011, Nakayama 2015,	guided transfusion:			
NCT00772239, Paniagua 2011, Rauter 2007, Schaden 2012	Avidan 2004, Kempfert 2011, Nakayama 2015, Paniagua			
ROTEM guided transfusion with platelet function analysis: Weber 2012	2011, Wang 2010, Weber 2012			
Population characteristics				
Adult patients with bleeding:				
Ak 2009: elective CABG with CPB; excessive bleeding was of hour after surgery or over 100 mL/hour for 4 consecutive hor TXA (10.3% vs 19%, $p = 0.007$)	defined as mediastinal blood loss over 400 mL in the first ours. Significantly more patients in the TEG group received			
Avidan 2004: elective CABG with CPB. Excessive bleeding of (> 100 mL/hour), had no evidence of a haemostatic abnorm	defined as any patient who continued to bleed excessively ality or had failed to respond to the treatment.			
Girdauskas 2010: high risk aortic surgery including urgent a with hypothermic circulatory arrest.	and emergency surgery (25 with acute type A dissection)			
Kempfert 2011: significant postoperative bleeding (> 200 m cardiac surgical procedures	L/hour) following standard elective isolated or combined			
Kultufan Turan 2006: CABG or valve surgery. Definition of e	excessive bleeding not stated.			
NCT00772239: cardiac surgery or heart transplantation wit	h abnormal bleeding.			
Nuttal 2001: abnormal microvascular bleeding after CPB, d the operative field performed by the surgeon and the anae	efined as diffuse oozing with no visible clot at inspection of esthetist after CBP.			
Paniagua 2011: patients undergoing cardiac surgery with excessive or diffuse bleeding after protamine. Excessive bleeding defined as mediastinal chest tube drainage \geq 300 mL in the first hour after surgery: \geq 250 mL in the second bour or \geq 150 mL at any later time.				
Rauter 2007: elective on-pump cardiac surgery. Definition	of excessive bleeding not stated.			
Royston 2001: cardiac surgery (heart transplantation, revase and revascularization surgery)	cularization, bypass, Ross procedure, multiple valve or valve			
Schaden 2012: surgical excision of burn wounds performed clinically bleeding patient, diffuse bleeding, no visible clot i hemodynamically relevant blood loss requiring additional	on the third day after burn trauma. Bleeding defined as n the operation site, no apparent vascular injury; volume therapy			
Shore-Lesserson 1999: cardiac surgical patients at moderat replacement, CABG, cardiac reoperation, or thoracic aortic	e to high risk of microvascular bleeding (valve replacement)			
Wang 2010: orthotopic liver transplantation				
Weber 2012: elective, complex cardiothoracic surgery (combined CABG and valve surgery, double or triple valve procedures, aortic surgery or redo surgery) with diffuse bleeding from capillary beds at wound surfaces or intraoperative or postoperative (during the first 24 postoperative hours) blood loss exceeding 250 mL/hour or 50 mL/10 min.				
Westbrook 2009: cardiac surgery, ~10% in each group with	urgent presentation.			
Children (aged less than 18 years) with bleeding:				
Cui 2010: cyanotic paediatric patients undergoing arterial s	witch operation or double roots transplantation. Definition			
of excessive bleeding not stated.				
Nakayama 2015: elective cardiac surgery with CBP in childr for the algorithm, but some of the included patients did no	en less than 20 kg. Diffuse bleeding was an entry criterion ot fulfil this criterion.			
Length of follow-up	Outcomes measured			
Follow-up ranged from 24 hours to three years (Wang 2010), but information on six trials was unclear or did not provide data	Mortality, bleeding events, blood loss, patients receiving transfusion, amount of product transfused, complications, incidence of surgical interventions and			
Literature search updated 5 Jan 2016	reoperation, quality of life, duration of mechanical ventilation, length of stay, cost-benefit,			
INTERNAL VALIDITY				
Overall QUALITY of the systematic review (descriptive)				
Rating (AMSTAR): High				
Description: No or one non-critical weakness – the systema	itic review provides an accurate and comprehensive			

summary of the results of the available studies that address the question of interest.

Cochrane review. Protocol first published 2009. Updated 2017.

STUDY DETAILS: Wikkelso 2016

Risk of bias of included studies: Only two of seventeen studies were judged to be of low risk of bias. Many of the studies were open label or did not provide information on blinding and had issues with incomplete report of outcome data, short follow-up, and small sample size.

RESULTS: TEG or ROTEM Outcome Clinical **Risk estimate (95%** Statistical significance judgement or No. patients (No. trials) n/N (%) CI) p-value usual care Mean ± SD **Heterogeneity**^a n/N (%) I² (p-value) Mean ± SD TEG/ROTEM versus any comparator Mortality, last follow-up* 14/364 (3.9%) 26/353 (7.4%) M-H Fixed effect Favours TEG/ROTEM N = 717 (8 trials) RR 0.52 (0.28, 0.95) p = 0.033Adjusted 0.51 (0.21, 1.26)^b No heterogeneity TEG (4 trials) $l^2 = 0\% (p = 0.54)$ 5/211 7/206 RR 0.72 (0.25, 2.07) ROTEM (4 trials) RR 0.44 (0.21, 0.93) *majority (7 out of 8 trials) 9/153 19/147 were at hospital discharge *two trials had zero events M-H Random effects Mortality, last follow-up 14/364 (3.9%) 26/353 (7.4%) No significant difference N = 717 (8 trials) RR 0.57 (0.30, 1.07) p = 0.08Adjusted 0.59 (0.23, No heterogeneity 1.54)^b $l^2 = 0\% (p = 0.54)$ Patients receiving RBC 261/422 (61.8%) 295/410 (72%) RR 0.86 (0.79, 0.94) Favours TEG/ROTEM Adjusted 0.86 (0.79, N = 832 (10 trials) p = 0.0010.95) No heterogeneity TEG (5 trials) 118/255 143/247 $l^2 = 0\% (p = 0.50)$ RR 0.80 (0.68, 0.95) ROTEM (5 trials) 143/167 152/163 RR 0.92 (0.85, 0.99) Patients receiving FFP 108/385 (28%) 177/376 (47%) RR 0.57 (0.33, 0.96) Favours TEG/ROTEM N = 761 (8 trials) p = 0.034RR 0.52 (0.20, 1.35) Substantial heterogeneity TEG (3 trials) 25/218 47/213 RR 0.58 (0.30, 1.12) $l^2 = 86\% (p < 0.00001)$ 833/167 130/163 ROTEM (5 trials) Patients receiving 106/422 (25.1%) 141/410 (34.4%) RR 0.73 (0.60, 0.88) Favours TEG/ROTEM platelets p = 0.0012N = 832 (10 trials) No heterogeneity TEG (5 trials) 32/255 50/247 RR 0.61 (0.41, 0.91) $l^2 = 0\% (p = 0.55)$ ROTEM (5 trials) 74/167 91/163 RR 0.79 (0.64, 0.98) Patients receiving FFP 12/83 27/82 RR 0.44 (0.24, 0.81) Favours TEG/ROTEM and platelets p = 0.008N = 165 (2 trials)No heterogeneity 10/30 5/30 Royston 2001 $l^2 = 0\% (p = 0.73)$ Shore-Lesserson 1999 7/53 17/52 53/77 56/79 RR 0.94 (0.76, 1.17) No significant difference Patients receiving fibrinogen concentrate p = 0.59N = 156 (2 trials)Mild heterogeneity Girdauskas 2010 21/27 26/29 l² = 22% (p = 0.26) Weber 2012 32/50 30/50 26/77 52/79 Patients receiving RR 0.39 (0.07, 2.16) No significant difference prothrombin complex p = 0.28concentrate Substantial heterogeneity N = 156 (2 trials) $l^2 = 91\% (p = 0.00064)$

STUDY DETAILS: Wikke	elso 2016			
Girdauskas 2010	4/27	26/29		
Weber 2012	22/50	26/50		
Dialysis dependent renal failure N = 200 (3 trials) Girdauskas 2010 Paniagua 2011 Weber 2012	16/103 5/27 8/26 3/50	30/97 7/29 13/18 10/50	RR 0.46 (0.28, 0.76)	Favours TEG/ROTEM p = 0.0028 No heterogeneity I ² = 0% (p = 0.48)
Thromboembolic events N = 305 (4 trials) Girdauskas 2010 Paniagua 2011 Shore-Lesserson 1999	5/156 4/27 0/26 1/53	5/149 3/29 0/18 0/52	RR 1.04 (0.35, 3.07)	No significant difference p = 0.94 No heterogeneity $l^2 = 0\% (p = 0.41)$
	0/50	2/50		
Excessive bleeding events and massive transfusion N = 280 (2 trials) Ak 2009 Girdauskas 2010	16/141 11/114 5/27	9/110 10/29	RR 0.82 (0.38, 1.77)	No significant difference p = 0.61 Moderate heterogeneity $l^2 = 34\%$ ($p = 0.22$)
Continuous outcomes	1	1	1	
RBC transfusion volume, Units Rauter 2007 Schaden 2012 Wang 2010	Mean (SD) 0.8 3.1 (2.1) 14.2 (7.1)	Mean (SD) 1.3 4.8 (3.0) 16.7 (12.8)	SMD ^d NR -0.63 (-1.37, 0.11) -0.23 (-0.98, 0.51)	ρ < 0.05 ° ρ = 0.12 ρ > 0.05
Ak 2009 Cui 2010 Girdauskas 2010 Kultufan Turan 2006 Weber 2012	Median (IQR) 1 (0, 1) 1 (1, 1) 6 (2, 13) 0 (0, 3) 3 (2, 6)	Median (IQR) 1 (1, 2) 1 (0.7, 1.9) 9 (4, 14) 1 (0, 2) 5 (4, 9)		p = 0.599 p > 0.05 p = 0.20 p = 0.100 p < 0.001
	Median (range)	Median (range)		
Nuttal 2001 Westbrook 2009	2 (0, 9) Total 14	3 (0, 70) Total 33		p = 0.039 p = 0.12 °
RBC transfusion volume, mL Paniagua 2011 Shore-Lesserson 1999	Mean (SD) 1774 (1394) 354 (487)	Mean (SD) 1604 (1366) 475 (593)	SMD ^d 0.12 (-0.48, 0.72) -0.22 (-0.61, 0.16)	NR p = 0.12
Avidan 2004	Median (IQR) 500 (0, 678)	Median (IQR) 495 (0, 612)		<i>p</i> = 0.03
RBC transfusion volume, mL/kg Nakayama 2015	Mean (IQR)	Mean (IQR)		n = 0.02
FED transfusion volume	22 (11, 34) Mean (SD)	Mean (SD)	SMDd	
Kultufan Turan 2006 Shore-Lesserson 1999 Wang 2010	2.8 (0.95) 36 (142) 12.8 (7.0)	2.7 (1.5) 217 (436) 21.5 (12.7)	0.08 (-0.54, 0.70) -0.56 (-0.95, -0.17) -0.82 (-1.60, -0.05)	p = 0.403 p < 0.04 p < 0.05

STUDY DETAILS: Wikke	elso 2016			
	Median (IQR)	Median (IQR)		
Ak 2009	1 (1, 1)	1 (1, 2)		p = 0.001
Girdauskas 2010	3 (0, 12)	8 (4, 18)		p = 0.01
Schaden 2012	0 (0, 0)	5.0 (1.5, 7.5)		p < 0.001
Weber 2012	0 (0, 3)	5 (3, 8)		p < 0.001
	Median (range)	Median (range)		
Nuttal 2001	2 (0, 10)	4 (0, 75)		p = 0.005
	Total	Total		
Rauter 2007	0	4		NR
Royston 2001	5	16		p < 0.05 °
Westbrook 2009	22	18		NR
FFP transfusion volume, mL	Mean (SD)	Mean (SD)	SMD d	
Cui 2010	719 (216)	883 (335)	-0.58 (-1.30, 0.14)	p < 0.05
Paniangua 2011	799 (1188)	707 (997)	0.08 (-0.52, 0.68)	NR
FFP transfusion volume, mL/kg	Median (IQR)	Median (IQR)		
Nakayama 2015	26 (16, 31)	25 (12, 41)		p = 0.87
Platelet transfusion volume, Units	Mean (SD)	Mean (SD)		
Wang 2010	27.5 (13.9)	30.1 (18.5)		p > 0.05
	Median (IQR)	Median (IQR)		
Ak 2009	1 (1, 1)	1 (1, 2)		p = 0.001
Cui 2010	1 (1, 1)	1 (0.7, 1.9)		p > 0.05
Girdauskas 2010	2 (2, 3)	2 (2, 3)		p = 0.70
Kultufan Turan 2006	0 (0, 4)	0 (0, 0)		p = 0.411
Weber 2012	2 (0, 2)	2 (0, 5)		p = 0.010
	Median (range)	Median (range)		
Nuttal 2001	6 (0, 18)	6 (0, 144)		p = 0.0001
Schaden 2012	0 (0, 0)	0 (0, 2)		p = 0.12
	Total	Total		
Royston 2001	1	9		p < 0.05 °
Westbrook 2009	5	15		NR
Platelet transfusion	Mean (SD)	Mean (SD)		
Panjangua 2011	212 (307)	331 (406)		NR
Shore-Lesserson 1999	34 (94)	83 (160)		p = 0.16
Platelet transfusion volume. mL/kg	Median (IQR)	Median (IQR)		
Nakayama 2015	0 (0, 25)	0 (0, 17)		p = 0.28
TEG/ROTEM versus clinico	al judgement or usu	al treatment (post-	hoc analysis)	
Mortality	7/224	9/221	RR 0.81 (0.32, 2.01)	No significant difference
N = 445 (4 trials)				p = 0.65
Ak 2009	3/114	2/110	1.45 (0.25, 8.50)	No heterogeneity
Girdauskas 2010	4/27	5/29	0.86 (0.26, 2.87)	$l^2 = 0\% (p = 0.53)$
Royston 2001	0/30	0/30	Not estimable	
Shore-Lesserson 1999	0/53	2/52	0.20 (0.01, 3.99)	
Patients receiving RBC	120/245	150/241	RR 0.85 (0.73, 1.00)	No significant difference
N = 486 (6 trials)				p = 0.048
Ak 2009	52/114	60/110	0.84 (0.64, 1.09)	Moderate heterogeneity

STUDY DETAILS: Wikke	elso 2016			
Cui 2010	3/17	5/14	0.49 (0.14, 1.71)	l ² = 31% (p = 0.2)
Girdauskas 2010	24/27	27/29	0.95 (0.81, 1.13)	
Kultufan Turan 2006	7/20	12/20	0.58 (0.29, 1.17)	
Schaden 2012	12/14	15/16	0.91 (0.71, 1.17)	
Shore-Lesserson 1999	22/53	31/52	0.70 (0.47, 1.03)	
Patients receiving FFP	32/208	86/207	0.38 (0.21, 0.68)	Favours TEG/ROTEM
N = 415 (4 trials)				p = 0.0012
Ak 2009	19/114	31/110	0.59 (0.36, 0.98)	Substantial heterogeneity
Girdauskas 2010	9/27	25/29	0.39 (0.22, 0.67)	l ² = 52% (p = 0.10)
Schaden 2012	0/14	14/16	0.04 (0.00, 0.60)	
Shore-Lesserson 1999	4/53	16/52	0.25 (0.09, 0.68)	
Patients receiving	44/245	75/241	RR 0.59 (0.43, 0.80)	Favours TEG/ROTEM
platelets				p = 0.00058
N = 486 (6 trials)	17/114	29/110	0.57 (0.33, 0.97)	No heterogeneity
Ak 2009	5/17	5/14	0.82 (0.30, 2.28)	$l^2 = 0\% (p = 0.72)$
Cui 2010	14/27	23/29	0.65 (0.43, 0.98)	
Girdauskas 2010	1/20	0/20	3.00 (0.13, 69.52)	
Kultufan Turan 2006	0/14	3/16	0.16 (0.01, 2.89)	
Schaden 2012	7/53	15/52	0.46 (0.20, 1.03)	
Shore-Lesserson 1999				
TEG/ROTEM] versus stand	lard laboratory test	-guided transfusior	n (post-hoc analysis)	1
Mortality	7/140	9/132	RR 0.36 (0.16, 0.84)	Favours TEG or ROTEM
N = 272 (4 trials)				p = 0.018
Nakayama 2015	0/50	0/50	Not estimable	No significant
Paniagua 2011	3/26	4/18	0.52 (0.13, 2.05)	heterogeneity
Wang 2010	2/14	3/14	0.67 (0.13, 3.40)	l ² = 0% (p = 0.49)
Weber 2012	2/50	10/50	0.20 (0.05, 0.87)	
Patients receiving RBC	107/126	110/118	RR 0.91 (0.83, 1.00)	No significant difference
N = 244 (3 trials)				p = 0.041
Nakayama 2015	42/50	45/50	0.93 (0.80, 1.09)	No significant
Paniagua 2011	23/26	16/18	1.00 (0.80, 1.23)	heterogeneity
Weber 2012	42/50	49/50	0.86 (0.75, 0.97)	l² = 0% (p = 0.44)
Patients receiving FFP	76/177	91/169	RR 0.83 (0.49, 1.40)	No significant difference
N = 346 (4 trials)				p = 0.48
Avidan 2004	2/51	0/51	5.00 (0.25, 101.63)	Substantial heterogeneity
Nakayama 2015	42/50	43/50	0.98 (0.83, 1.15)	l² = 79% (p = 0.003)
Paniagua 2011	12/26	8/18	1.04 (0.54, 2.01)	
Weber 2012	20/50	40/50	0.50 (0.35, 0.72)	
Patients receiving	60/126	65/118	RR 0.87 (0.68, 1.11)	No significant difference
N = 244 (3 trials)	22/50	22/50	100 (064 150)	$\mu = 0.20$
Nakayama 2015	22/50	22/50	1.00 (0.64, 1.56)	heterogeneity
Daniaqua 2013	10/26		0.09 (0.37, 1.31)	$l^2 = 0\% (n = 0.6\%)$
Weber 2012	28/50	33/50	0.85 (0.62, 1.16)	, 070 (p = 0.0 4)

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population with some caveats

The majority of patients were undergoing cardiac surgery with cardiopulmonary bypass. Population included liver transplants (one trial), wound excisions of burn patients (one trial), cardiac surgery patients (96%). Patients had intraor post-operative bleeding but not all were critical.

STUDY DETAILS: Wikkelso 2016

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian healthcare context with few caveats.

All but two studies conducted in countries with a similar health care system as Australia.

Additional comments

Authors conclusions

Low quality evidence suggests application of TEG- or ROTEM- guided transfusion strategies may reduce the need for blood products and improve morbidity in patients with bleeding. Almost all evidence is in elective cardiac surgery involving CPB.

List of included studies (patients with critical bleeding)

The authors identified 17 RCTs that enrolled 1493 participants.

No coagulopathy or severe postoperative bleeding at inclusion:

Ak 2009, Avidan 2004, Cui 2010, Girdauskas 2010, Kultufan Turan 2006, Nakayama 2015, Royston 2001, Schaden 2012, Shore-Lesserson 1999, Wang 2010, Westbrook 2009

Coagulopathy or severe postoperative bleeding at inclusion:

Kempfert 2011, Nuttal 2001, Paniagua 2011, Weber 2012

Two trials provided no data: NCT00772239; Rauter 2007

CI, confidence interval; ITT, intention-to-treat; MD, mean difference; PP, per-protocol; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

b. Trial sequential analysis showed only 54% of required information size (717/1325) had been reached. Not statistically significant with control event proportion of 7.4%.

c. p-value is/appears to be calculated based on units given to each group instead of mean/median, thereby wrongly assuming that each of the units given are independent

d. Calculated posthoc using RevMan 5.4

STUDY DETAILS: Fahrendorff 2017

Citation

Fahrendorff, M., Oliveri, R. S., & Johansson, P. I. (2017). The use of viscoelastic haemostatic assays in goal-directing treatment with allogeneic blood products - A systematic review and meta-analysis. Scandinavian journal of trauma, resuscitation and emergency medicine, 25(1), 39. doi:http://dx.doi.org/10.1186/s13049-017-0378-9

Affiliation/Source of funds

Author affiliations: Section for Transfusion Medicine, Capital Region Blood Bank, Copenhagen; Department of Surgery, Centre for Translational Injury Research, UT Health, University of Texas; Center for Systems Biology. The School of Engineering and Natural Sciences, University of Iceland

The authors declared no conflicts of interest and no funding.

Study design	Level of evidence	Location	Setting
Systematic review and meta-analysis of RCTs	1	List countries of the included studies not provided Cao 2016 (China)* * article in Chinese	Trauma (Gonzalez 2016) Obstetrics and maternity (Barinov 2015 [PPH]), Burns excision (Schaden 2012) Hepatic surgery (De Pietri 2015) Liver transplant (Wang 2010) Scoliosis (Cao 2016) Cardiothoracic (9 trials)
Intervention		Comparator	
VHA-guided algorithm:		Standard of Care	
<i>TEG:</i> Ak 2009; Avidan 2004; Barinov 2015; Cao 2016; De Pietri 2015; Gonzalez 2015; Nuttall 2001; Royston 2001; Shore- Lesserson 1999; Wang 2010; Westbrook 2009		The clinician's discretion and coagulation tests	/or based on conventional

STUDY DETAILS: Fahrendorff 2017	
ROTEM:	
Girdauskas 2010; Paniagua 2011; Schaden 2012; Weber	
2012	
Population characteristics	
Patients with an acute need for blood products due to blee	ding
Length of follow-up	Outcomes measured
Search of PubMed and Embase.	Mortality
Literature search dates not provided.	Perioperative bleeding
Only RCTs included.	Transfusion requirements (RBC, FFP, PLT)*
Paediatric trials excluded.	
	*Where transfusion volume was reported in mL, the authors
	calculated the corresponding number of units using the following conversion factors:
	1U RBC = 250 mL/U
	1U FFP = 270 mL/U
	1U PLT = 340 mL/U
	(based on standard volume over the previous years in the Capital
	Region Blood Bank, Rigshospitalet, Copenhagen)

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Low

Description: One critical flaw with or without non-critical weaknesses – the review has a critical flaw and *may not* provide an accurate and comprehensive summary of the available studies that address the question of interest.

Search dates were not provided and no quality assessment of the included studies was performed.

Risk of bias of included studies: The overall risk of bias for included studies was not assessed by the review authors. There was mention that the decision to transfuse potentially encompasses a bias to a greater number of transfusions between clinicians with a different background and clinical practice. The bias is likely to favour the control.

RESULTS:

Outcome No. patients (No. trials)	VHA n/N (%) Mean ± SD	Control n/N (%) Mean ± SD	Risk estimate (95% CI)	Statistical significance p-value Heterogeneity ^a I ² (p-value)
VHA versus Control				
Mortality (all cause) N = 579 (6 studies)	30/291 (10.3)	47/288 (16.3)	OR 0.60 (0.34, 1.07)	No significant difference p = 0.08
Ak 2009	3/114	2/110	1.46 (0.24,8.91)	Mild heterogeneity
Wang 2010	2/14	3/14	0.61 (0.09, 4.37)	l² = 11% (p = 0.35)
Girdauskas 2010	4/27	5/29	0.83 (020, 3.50)	
Weber 2012	2/50	10/50	0.17 (0.03, 0.81)	
Gonzalez 2015	11/56	20/55	0.43 (0.18, 1.01)	
De Pietri 2016	8/30	7/30	1.19 (0.3.85)	
RBC transfusion volume N = 453 (6 studies)	NA (260)	NA (193)	SMD -0.64 (-1.12, - 0.15)	Favours TEG/ROTEM p = 0.01 Substantial
Shore-Lesserson 1999	1.416 ± 1.948 (53)	1.9 ± 2.372 (52)	-0.22 (-0.61, 0.16)	heterogeneity
Wang 2010	14.2 ± 7.1 (14)	16.7 ± 12.8 (14)	–0.23 (–0.98, 0.51)	l² = 82% (p = 0.001)
Schaden 2012	3.1 ± 2.1 (14)	4.8 ± 3 (16)	–0.63 (–1.37, 0.11)	
Barinov 2015	4.813 ± 1.255 (92)	6.102 ± 2.28 (29)	–0.82 (–1.25, –0.39)	
Gonzalez 2015	13.96 ± 12.68 (55)	15.65 ± 13.85 (54)	–0.13 (–0.59, 0.25)	
Cao 2016	4.5 ± 1.5 (32)	7.1 ± 1.2 (28)	–1.88 (–2.49, –1.26)	

STUDY DETAILS: Fahrendorff 2017 FFP transfusion volume NA (246) NA (177) SMD -1.98 (-3.41, -Favours TEG/ROTEM 0.54) p = 0.007N = 423 (5 studies) Substantial -0.53 (-0.92, -0.14) heterogeneity Shore-Lesserson 1999 0.133 ± 0.526 (53) 0.804 ± 1.715 (52) -0.82 (-1.60, -0.05) $l^2 = 97\% (p = 0.00001)$ Wang 2010 12.8 ± 7 (14) 21.5 ± 12.7 (14) -2.73 (-3.28, -2.19) Barinov 2015 4.8 ± 1.537 (92) 9.25 ± 1.862 (29) -0.01 (-0.39, 0.37) Gonzalez 2015 7.49 ± 7.37 (55) 7.57 ± 7.86 (54) -6.32 (-7.60, -5.05) Cao 2016 0.867 ± 0.17 (32) 1.904 ± 0.152 (28) PLT transfusion volume NA (246) NA (177) SMD -0.34 (-0.92, No significant 0.24) difference N = 423 (5 studies) p = 0.25-0.37 (-0.76, 0.01) Substantial Shore-Lesserson 1999 0.1 ± 0.276 (53) 0.244 ± 0.471 (52) heterogeneity -0.17 (-0.91, 0.58) Wang 2010 27.3 ± 13.9 (14) 30.1 ± 18.5 (14) $l^2 = 87\% (p = 0.00001)$ Barinov 2015 0.06 (-0.32, 0.43) 1.64 ± 1.95 (55) 1.52 ± 2.15 (54) 0.30 (-0.12, 0.72) Gonzalez 2015 1.14 ± 0.6 (92) 0.95 ± 0.72 (29) -1.62 (-2.21, -1.03) Cao 2016 2.5 ± 1.3 (32) 4.2 ± 0.6 (28)

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population with few caveats

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats

Additional comments

Authors conclusions:

Total bleeding volume and the amount of transfused RBCs and FFP was significantly reduced in the VHA-guided intervention groups compared to conventional coagulation tests control group. The difference in RBC requirements may be explained by a better haemostatic competence in TEG/ROTEM-guided groups accomplished through timely administration of plasma and platelets, further supported by the reduction of bleeding in the VHA-guided group of patients.

No statistically significant difference was found between groups regarding all cause-mortality and requirement for platelet transfusion. The sizes of the respective trial populations were small and a lack of cohesion in permission of platelet inhibitors, anticoagulants, antifibrinolytics and triggers used to guide resuscitation with blood products was observed. The control groups were managed either by clinical judgement combined with conventional coagulation tests or by the sole use of algorithms applying only conventional coagulation test-triggers for transfusion.

List of included studies

Cardiac: Ak 2009, Avidan 2004, Girdauskas 2010, Nuttall 2001, Paniagua 2011, Royston 2001, Shore-Lesserson 1999, Weber 2012, Westbrook 2009

Other: Barinov 2015 (PPH), Cao 2016 (scoliosis), De Pietri 2015 (hepatic), Gonzalez 2015 (trauma), Schaden 2012 (burn wounds), Wang 2010 (liver)

Cl, confidence interval; FFP, fresh frozen plasma; OR, odds ratio; PLT, platelet; RBC, red blood cell; PPH, postpartum haemorrhage; RCT, randomised controlled trial; RR, relative risk; ROTEM, rotational thromboelastometry; SD, standard deviation; SMD, standard mean difference; VHA, viscoelastic haemostatic assay;

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

STUDY DETAILS: Serraino 2017 Citation

Serraino, G. F., & Murphy, G. J. (2017). Routine use of viscoelastic blood tests for diagnosis and treatment of coagulopathic bleeding in cardiac surgery: Updated systematic review and meta-analysis. British Journal of Anaesthesia, 118(6), 823-833. doi:http://dx.doi.org/10.1093/bja/aex100

Affiliation/Source of funds

The study was funded by British Heart Foundation [RG/13/6/29947 (G.J.M.), CH/12/1/29419 (G.J.M.), and PG/11/95/29173 (G.J.M.)]; Leicester National Institute for Health Research Cardiovascular Biomedical Research Unit (G.J.M.). *Author affiliations:* University of Leicester

The authors declared no co Study design Systematic review and meta-analysis of RCTs Intervention	Difficts of interest.	e	Locatio	า	Setting	
Study design Systematic review and meta-analysis of RCTs Intervention	Level of evidenc	e	Locatio	า	Setting	
Systematic review and meta-analysis of RCTs Intervention	1				Jetting	
meta-analysis of RCTs Intervention			Countrie	es of included	Surgical (cardiac)	
Intervention			studies not reported			
		Compar	ator			
ROTEM, TEG or Sonoclot, alone or combined with Platelet Function analyser			Clinical judgement and standard laboratory tests, including prothrombin time (PT), activated partial thromboplastin time (aPTT), activated clotting time, and plasma fibrinogen concentrations.			
Population characteristic	S					
Mixed cardiac surgery in a Karkouti 2016: Mixed cardia * Effective sample size recalcul calculation of 0.095 as recomm ** all other studies previously e	dult and paediatric, ac surgery (ROTEM) * ated by Serraino 2017 to nended in the Cochrane xtracted in Wikkelso 20	patients o account for s e Handbook 116	tepped we	dge cluster trial desigr	n using the intracluster coefficient	
Length of follow-up			Outcom	es measured		
Citations published between database inception and December 3, 2016.			Mortality Morbidit Resourc Plasma	y :y including reopera e use: Red Blood Ce Transfusion e Care Unit and hosj	tion II, Fresh frozen Plasma and pital Length of Stay	
INTERNAL VALIDITY						
Overall QUALITY of the sy	stematic review (de	escriptive)				
Rating (AMSTAR): HighDescription: No or one non-critical weakness – the systematic review provides an accurate and comprehensivesummary of the results of the available studies that address the question of interest.Risk of bias of included studies: The overall risk of bias for included studies was judged by the review authors to behigh. The risk of procedural bias was high, as there was little or no allocation concealment or blinding of personnel.There were concerns with patient selection bias due to significant differences in baseline characteristics ofcomparator groups and attrition bias due to incomplete reporting of outcome data, with no explanations given formissing data. The bias is likely to favour the intervention. The trial by Karkouti 2016 was at low risk of bias for all of theconventional bias domains for cluster randomized trials, with the exception of potential funding bias, and also did not						
RESULTS:						
Outcome No. patients (No. trials)	TEG or ROTEM n/N (%) Mean ± SD	Standard o n/N (%) Mean ± SD	f care	Risk estimate (95% CI)	Statistical significance p-value Heterogeneityª I² (p-value)	
TEG/ROTEM versus stand	ard of care					
Mortality N = 689 (7 trials) Shore-Lesserson 1999 Royston 2001 Ak 2009 Girdauskas 2010 Paniagua 2011 Weber 2012 Nakayama 2014	12/350 (3.4) * see Wikkelso 2016 for individual trial data	23/339 (6.8)		RR 0.55 (0.28, 1.10)	No significant difference p = 0.09 No significant heterogeneity $l^2 = 1\% (p = 0.40)$	
Morbidity, acute kidney injury N = 424 (4 trials) Ak 2009	23/217 (10.6) 7/114	39/207 (18.8 9/110	3)	RR 0.42 (0.20, 0.86)	Favours TEG/ROTEM p = 0.02 Mild heterogeneity $l^2 = 26\%$ ($p = 0.25$)	

STUDY DETAILS: Serra	aino 2017			
Girdauskas 2010 Paniagua 2011 Weber 2012	* see Wikkelso 2016 for individual trial data			
Morbidity, cerebrovascular accident N = 163 (2 trials) Girdauskas 2010 Shore-Lesserson 1999	5/80 (6.3) * see Wikkelso 2016 for individual trial data	3/81 (3.7)	RR 1.73 (0.41, 7.23)	No significant difference p = 0.45 No heterogeneity I² = 0% (p = 0.68)
Morbidity, time on ventilation (hrs) N = 328 (3 trials) Ak 2009 Girdauskas 2010 Paniagua 2011	NR	NR	MD 0.28 (-0 .66, 1.23)	No significant difference p = 0.56 No heterogeneity $l^2 = 0\% (p = 0.49)$
RBC transfusion N = 1116 (11 trials) Karkouti 2016 Westbrook 2009	321/567 (56.6%) 58/127 14/32	365/549 (66.5%) 52/118 33/37	RR 0.88 (0.79, 0.97) RR 1.04 (0.78, 1.37) RR 0.49 (0.33, 0.74)	Favours TEG/ROTEM p = 0.01 Moderate heterogeneity $l^2 = 43\%$ ($p = 0.06$)
Ak 2009 Avidan 2004 Cui 2010 Girdauskas 2010 Kultufan Turan 2006 Nakayama 2014 Paniagua 2011 Shore-Lesserson 1999 Weber 2012	* see Wikkelso 2016 for individual trial data			
FFP transfusion ^b N = 976 (8 trials) Karkouti 2016	138/498 (27.7%) 30/127	187/478 (39.1%) 24/118	RR 0.68 (0.46, 1.00) RR 1.16 (0.72, 1.87)	Favours TEG/ROTEM p = 0.05 Substantial heterogeneity
Ak 2009 Avidan 2004 Girdauskas 2010 Nakayama 2014 Paniagua 2011 Shore-Lesserson 1999 Weber 2012	* see Wikkelso 2016 for individual trial data			l² = 79% (p = 0.0001)
Platelet transfusion ▷ N = 1047 (10 trials) Karkouti 2016	137/535 (NR) 31/127	169/512 (NR) 31/118	RR 0.78 (0.66, 0.93) RR 1.16 (0.72, 1.87)	Favours TEG/ROTEM p = 0.004 No heterogeneity $l^2 = 0\%$ ($p = 0.60$)
Ak 2009 Avidan 2004 Cui 2010 Girdauskas 2010 Kultufan Turan 2006 Nakayama 2014 Paniagua 2011	* see Wikkelso 2016 for individual trial data			

STUDY DETAILS: Serraino 2017 Shore-Lesserson 1999 Weber 2012 Fibrinogen concentrate 56/79 (70.9) RR 0.94 (0.76, 1.17) 53/77 (68.8) No significant difference N = NR (2 trials) p = 0.59* see Wikkelso 2016 Girdauskas 2010 Mild heterogeneity for individual trial Weber 2012 $I^2 = 22\% (p = 0.26)$ data Prothrombin complex 26/77(NR) 56/79 (NR) RR 0.39 (0.07, 2.16) No significant difference concentrate p = 0.28* see Wikkelso 2016 N = NR (2 trials) Substantial heterogeneity for individual trial Girdauskas 2010 $l^2 = 91\% (p = 0.0006)$ data Weber 2012 **EXTERNAL VALIDITY** Generalisability (relevance of the study population to the Guidelines target population) The evidence is directly generalisable to the Australian population with few caveats Applicability (relevance of the evidence to the Australian health care system) The evidence is directly applicable to the Australian healthcare context with few caveats Additional comments Authors conclusions Evidence to support routine use of viscoelastic testing in cardiac surgery is weak. Authors of the recent Cochrane review stated that further large pragmatic trials at low risk of bias were required to resolve this knowledge gap. However, inclusion of the large pragmatic trial of viscoelastic testing by Karkouti and colleagues did not alter the precision of the estimates from existing parallel group trials. These findings lead us to hypothesize that viscoelastic testing lacks clinical effectiveness. This hypothesis is supported by weak evidence of predictive accuracy of viscoelastic testing for coagulopathic bleeding. On the basis of the weight of the available evidence, further large trials are unlikely to demonstrate clinical benefits for current viscoelastic point-of-care tests. Research should now focus on development of new techniques to identify important and treatable causes of coagulopathy in cardiac surgery. List of included studies Karkouti 2016, Nakayama 2015, Weber 2012, Cui 2010, Girdauskas 2010, Paniagua 2011, Ak 2009, Westbrook 2009, Avidan 2004, Nuttall 2001, Royston 2001, Shore-Lesserson 1999 Notes: No Sonoclot trials were included. Two trials (NCT00772239; NCT01218074) were published only as protocols without any data available. CI, confidence interval; ; FFP, fresh frozen plasma; RBC, red blood cell; MD, mean difference; PP, per-protocol; RCT, randomised controlled trial; ROTEM, rotational thromboelastometry; RR, relative risk; SD, standard deviation; TEG, thromboelastography a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%. b. Numbers differ from that reported in Wikkelso 2016 & 2017. Upon further inspection, Forest plots C and D in Figure 2 are labelled incorrectly (FFP and Platelets switched). Numbers in the text are correct. **STUDY DETAILS: Roullet 2018** Citation Roullet, S., de Maistre, E., Ickx, B., Blais, N., Susen, S., Faraoni, D., Garrigue, D., Bonhomme, F., Godier, A., & Lasne, D. (2018). Position of the French Working Group on Perioperative Haemostasis (GIHP) on viscoelastic tests: What role for which indication in bleeding situations? Anaesthesia Critical Care and Pain Medicine. https://doi.org/10.1016/j.accpm.2017.12.014 Affiliation/Source of funds

Details on funding not provided.

Author affiliations: French Working Group on Perioperative Haemostasis (GIHP) on viscoelastic tests

The authors declared no conflicts of interest.

Study design	Level of evidence	Location	Setting
Guidelines	1/11	France Mallaiah 2015: UK	Emergency and perioperative

STUDY DETAILS: Rou	llet 2018			
Review and narrative commentary of available evidence		Snego	vskikh 2018: US	
Intervention	I	Comp	arator	
TEG®, thromboelastogro	iphy:	Any (d	etails not reported)	
Kashuk 2012, Johansson 2013, Gonzalez 2015, Wang 2012				
ROTEM®, thromboelasto	ometry			
Schöchl 2010, Mallaiah 20	015			
Population characterist	ics			
Patients referred to the f	ollowing clinical situat	ions: trauma, obstet	rics, surgical (cardiac,	liver)
Mallaiah 2015: use of a RC associated with coagulor protocol to manage use Snegovskikh 2018: prosp	DTEM-based algorithm Dathy (FIBTEM A5 <12 r of fibrinogen concentr ective cohort use of a F	n for major obstetric nm, indicative of a p ate ROTEM-based algori	haemorrhage (estima lasma fibrinogen leve thm for PPH manage	ated blood loss > 1500 ml) el of 2 g/L) before and after ement (US)
Wikkelsø 2016: Cochrane Karkouti 2016: (12 Canadi ROTEM with an algorithr Beaumont, Texas, USA).	review involving 17 (m an centres, 7402 patie n using EXTEM CT anc	ainly cardiac) studie nts) was conducted I A10 and FIBTEM A1	rs. in two stages: initially 0, and PlateletWorks	no monitoring, then use of (Helena Laboratories,
Nakayama 2015: (Paediat routine tests Wang 2012: not described Poullet 2015: prospective	rics) compared efficac d before/after study (co	y of a transfusion alg	gorithm using ROTEM	1 to an approach based on
Length of follow-up		Outco	mes measured	4(69)
Literature search details	not provided.	Questi	ons asked: Can viscoe	elastic tests be used to
 Literature search details not provided. Questions asked: Can viscoelastic tests be used to identify abnormal haemostasis? monitor fibrolysis? guide treatment of coagulopathy? improve prognosis? are results obtained more rapidly than laboratory 				
		- an	d should they be at th	ne bedside or the laboratory?
INTERNAL VALIDITY				
Overall QUALITY of the	systematic review (de	escriptive)		
Rating (AMSTAR): Critically low Description: More than one critical flaw with or without non-critical weaknesses – the review has more than one critical flaw and should not be relied on to provide an accurate and comprehensive summary of the available studies. Details regarding Study design, study identification, study selection, or critical appraisal of studies not provided. <i>Risk of bias of included studies:</i> the risk of bias of included studies were not assessed/reported by the review authors.				
RESULIS:				a
Outcome	TEG or ROTEM	no TEG or ROTEM	Risk estimate	Statistical significance
No. patients (No. trials)	n/N (%) Mean ± SD	n/N (%) Mean ± SD		<i>p</i> -value Heterogeneity ª l²(<i>p</i> -value)
No. patients (No. trials) Trauma	n/N (%) Mean ± SD	n/N (%) Mean ± SD		p-value Heterogeneity ^a I ² (p-value)

STUDY DETAILS: Roullet 2018				
Transfusion volumes N = NR (1 RCT) Gonzalez 2015	Transfused amounts of RBC, FFP and platelets were comparable. The group receiving the routine tests received more platelets and FFP early compared to the TEG group. At 24 hrs, only the amount of fibrinogen administered was different, being higher in the group managed with routine tests.	No significant difference NR		

Several "before-after" cohort studies (Kashuk 2012, Johansson 2013, Schöchl 2010) concluded that the inclusion of viscoelastic tests in mass transfusion protocols could improve the prognosis of patients or reduce transfusion needs. However, their methodology does not allow conclusions to be drawn about the value of viscoelastic tests, as they evaluated the implementation of a protocol including viscoelastic test with no protocol or historical or scoring data.

Obstetrics and maternity (Postpartum haemorrhage) ^b

Mortality N = 93 (1 Coh) Mallaiah 2015	0/51	0/42	NR	No significant difference p = 0.1211
TRALI N = 93 (1 Coh) Mallaiah 2015	0/51	0/42	NR	No significant difference NR
TACO N = 93 (1 Coh) Mallaiah 2015	0/51	4/42	NR	Favours ROTEM p = 0.0367
Postpartum hysterectomy N = 179 (2 studies) Mallaiah 2015 Snegovskikh 2018	NR 3/51 (6) 7/28 (25)	NR 6/42 (14) 31/58 (53.5)	NR	No significant difference NR p = 0.013
ICU admission N = 179 (2 studies) Mallaiah 2015 Snegovskikh 2018	NR 1/51 (2) 1/28 (3.6)	NR 4/42 (9) 25/58 (43.1)	NR	No difference, NR Favours ROTEM, p < 0.0001
Transfusion volume, any blood product N = 93 (1 Coh) Mallaiah 2015	NR (51)	NR (42)	Data shown in graphs	Favours ROTEM p = 0.0004
RBC transfusion volume, Units N = 93 (1 Coh) Mallaiah 2015	NR (51)	NR (42)	Data shown in graphs	No significant difference p = 0.1211
FFP transfusion volume, Units N = 93 (1 Coh) Mallaiah 2015	NR (51)	NR (42)	Data shown in graphs	Favours ROTEM p < 0.0001
CRYO transfusion volume, Units N = 93 (1 Coh) Mallaiah 2015	NR (51)	NR (42)	Data shown in graphs	Favours ROTEM p < 0.0001
PLT transfusion volume, g N = 93 (1 Coh) Mallaiah 2015	NR (51)	NR (42)	Data shown in graphs	Favours ROTEM p = 0.0035
FC transfusion volume, g N = NR (1 Coh)	NR (51)	NR (42)	Data shown in graphs	Favours ROTEM p = 0.0005

STUDY DETAILS: Roul	let 2018			
Mallaiah 2015				
RBC transfusion received, ≥ 1 Unit N = 86 (1 Coh) Snegovskikh 2018	17/28 (60.7)	55/58 (94.8)	NR	Favours ROTEM p < 0.001
RBC transfusion received, ≥ 6 Units N = 93 (1 Coh) Mallaiah 2015	5/51 (10)	12/42 (29)	NR	Favours ROTEM p = 0.0299
FFP transfusion received, ≥ 1 Unit N = 86 (1 Coh) Snegovskikh 2018	3/28 (10.7)	42/58 (72.4)	NR	Favours ROTEM p < 0.001
CRYO transfusion received, ≥ 5 Units N = 86 (1 Coh) Snegovskikh 2018	6/28 (21.4)	11/58 (19)	NR	No significant difference p = 0.78
PLT transfusion received, ≥ 5 Units N = 86 (1 Coh) Snegovskikh 2018	0/28 (0)	26/58 (44.8)	NR	Favours ROTEM p < 0.001
Received a fibrinogen product N = 93 (1 Coh) Mallaiah 2015	21/51 (41.2)	30/42 (71.4)	NR	Favours ROTEM p = 0.0062
Est. total blood loss, mL N = 86 (1 Coh) Snegovskikh 2018	Median (IQR) 2000 (1600–2500)	Median (IQR) 3000 (2000–4000)	NR	Favours ROTEM p < 0.001
Surgical (cardiac)				
Mortality N = 1493 (17 studies) Wikkelsø 2016 * trials using ROTEM only **compared to SLT guided algorithms	NR	NR	RR 0.52 (0.28, 0.95) RR 0.44 0.21, 0.93) RR 0.36 (0.16, 0.84)	Favours TEG/ROTEM NR
RBC transfusions N = 1493 (17 studies) Wikkelsø 2016 N = 7402 (1 study) Karkouti 2016 N = NR (1 study) Nakayama 2015	NR NR NR	NR NR NR	RR 0.86 (0.79, 0.94) RR 0.91 (0.85, 0.98) NR	Reduction p = 0.02. Favours TEG/ROTEM Reduction
FFP N = 1493 (17 studies) Wikkelsø 2016 N = 7402 (1 study)	NR	NR	RR 0.57 (0.33, 0.96)	Reduction
Karkouti 2016 N = NR (1 study) Nakayama 2015	NR	NR	NR	No reduction Reduction (postoperative) Increased (intraoperative)
Platelets				

STUDY DETAILS: Roullet 2018					
N = 1493 (17 studies)					
Wikkelsø 2016	NR	NR	RR 0.73 (0.60, 0.88)	Reduction	
N = 7402 (1 study)					
Karkouti 2016	NR	NR	RR 0.77 (0.68, 0.87)	p < 0.001 Favours TEG/ROTEM	
N = NR (1 study)					
Nakayama 2015	NR	NR	NR	Increased (intraoperative)	
Factor concentrates (fibrinogen, CRYO and PCC)	NR	NR	NR	No reduction	
N = 7402 (1 study)					
Karkouti 2016					
Acute kidney injury	NR	NR	RR 0.46 (0.28, 0.76)	Reduction	
N = NR (1 SR)					
Wikkelsø 2016					

The results demonstrate the benefit of blood transfusion strategies, possibly combined with a functional platelet test, but with a low level of evidence (heterogeneity of studies, low numbers of patients).

It is difficult to distinguish the impact of viscoelastic tests from that of a systematic approach with a defined algorithm of the indication for transfusion. However, these studies suggest that the indication for transfusion based on real-time biological monitoring and a defined algorithm is associated with decreased transfusion and haemorrhagic complications.

Surgical (liver transplant)

Transfusion needs	NR	NR	NR	No difference
N = 60 (1 study)				* only platelets and fibrinogen
Roullet 2015				guided by ROTEM (not FFP)
FFP	NR	NR	NR	Reduction
N = NR (1 RCT)				
Wang 2012				

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population with some caveats

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian healthcare context

Additional comments

Authors conclusions:

The authors concluded that viscoelastic tests *must* be included in algorithms for the management of coagulopathy and bleeding, defined in each centre and for each population of patients. While their value in the management of trauma and in cardiac surgery seems clear, studies with a high level of evidence are still lacking in obstetrics, liver transplantation and paediatrics.

The GIHP proposes that viscoelastic tests be included in ACT algorithms, so that labile blood products and factor concentrates may be given based on pre-established thresholds. Prospective multicentric studies evaluating these algorithms are necessary. These diagnostic algorithms for coagulopathy must be part of a comprehensive approach to the management of severe trauma patients in which the main objective is to treat the cause of the bleeding.

The GIHP proposes that the fibrinogen concentration should be rapidly evaluated in the event of PPH and viscoelastic tests may be useful in this regard. Given the limitations of viscoelastic tests in evaluating fibrinolytic activity, it is proposed not to guide the administration of tranexamic acid on viscoelastic tests but to administer it as soon as possible in the event of PPH.

In cardiac surgery, the GIHP proposes that viscoelastic tests should be used in the event of haemorrhage at the end of surgery and postoperatively. They are carried out essentially at the end of ECC, rather after the neutralisation of heparin, to guide the therapeutic strategy. The recommendation is that they should be included in algorithms.

In the case of liver transplants, viscoelastic tests can be an aid in LT by limiting the transfusion of labile blood products, probably at the cost of an increase in the transfusion of fibrinogen. viscoelastic tests lack sensitivity for the diagnosis of hyper fibrinolysis. The GIHP proposes not waiting for the appearance of typical hyper fibrinolysis plots to use antifibrinolytics if other clinical features are present such as diffuse or massive bleeding.

STUDY DETAILS: Roullet 2018

List of relevant included studies:

SRs: Veigas 2016, Wikkelsø 2016

RCTs: Gonzalez 2015, Snegovskikh 2018, Mallaiah 2015, Karkouti 2016, Nakayama 2015, Wang 2012

Coh: Roullet 2015

ACT, activated clotting time; Cl, confidence interval; FFP, fresh frozen plasma; GIHP, French Working Group on Perioperative haemostasis; hrs, hours; ITT, intention-to-treat; LT, liver transplantation; ECC, extracorporeal circulation; MD, mean difference; NR, not reported; PPH, postpartum haemorrhage; PCC, Prothrombin Complex Concentrate; postpartum haemorrhage; RBC, red blood cell; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation; SLT, standard laboratory testing; TEG, thromboelastography; ROTEM, thromboelastometry; USA, United States of America

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

b. Data retrieved from primary studies

STUDY DETAILS: Li 2019

Citation

Li, C., Zhao, Q., Yang, K., Jiang, L., & Yu, J. (2019). Thromboelastography or rotational thromboelastometry for bleeding management in adults undergoing cardiac surgery: a systematic review with meta-analysis and trial sequential analysis. Journal of Thoracic Disease, 11(4), 1170-1181. doi:10.21037/jtd.2019.04.39

Affiliation/Source of funds

Funding: This meta-analysis was supported by National Natural Science Foundation of China (NSFC-81670385 to J Yu); Foundation of Lanzhou University Second Hospital (ynbskyjj2015-2-1 to J Yu) and Cuiying Technology Innovation Project of Lanzhou University Second Hospital (CY2018-MS05 to Q Zhao)

Author affiliations:

The authors declared no conflicts of interest.

Study design	Level of evidence	Location ^a	Setting ^a	
Systematic review and meta-analysis of RCTs and observational studies	1-111	Kuiper 2019 (The Netherlands) St-Onge 2018 (Canada)	Cardiac (Kuiper 2019, St- Onge 2018)	
Intervention		Comparator ^a		
Rotational thromboelastometry (ROTEM)-guided transfusion algorithms (TEM International GmbH, Munich Germany)		Kuiper 2019: Classical guide according to standard labor team approach and activate of care (POC) device St-Onge 2018: "transfusions judgement and standard co	d transfusion algorithm, ratory tests, managed via a ed clotting times using a point on the basis of clinical pagulation test results."	

Population characteristics^a

Li 2019: Cardiac surgery patients

Kuiper 2019: A single centre, prospective, registry before-and-after study cohort study. All patients undergoing cardiac surgery (CPB) in the respective periods formed part of the study cohort.

St-Onge 2018: A single centre retrospective, before-and-after cohort study. All consecutive patients who underwent aortic procedures involving the root, ascending aorta, or aortic arch in the period before and after the implementation of a ROTEM-based transfusion algorithm. Massive transfusion was defined as more than 20 U of allogenic blood products.

Length of follow-up	Outcomes measured
Citations published between 1980 to August 1, 2017. Searched the Cochrane Register of Controlled Trials, MEDLINE, EMBASE, BIOSIS, International Web of Science, Latin American Caribbean Health Sciences Literature, The Chinese Biomedical Literature Database, Advanced Google, and Cumulative Index to Nursing & Allied Health Literature.	All-cause mortality (longest follow-up data from each trial regardless of the period of follow-up); Blood loss including mediastinal drainage and post- operative bleeding; Proportion of patients transfused with allogeneic blood products, including red blood cell (RBC) concentrates, fresh frozen plasma (FFP), platelet (PLT) concentrates, CRYO and some pharmacological agents such as
Length of follow up:	fibrinogen concentrate and prothrombin complex concentrate (PCC);

STUDY DETAILS: Li 2019	
Kuiper 2019: hospital discharge/30d as latest follow-up (6 SoC and 10 ROTEM patients lost to follow up after 30	Incidence of massive bleeding or massive transfusion and surgical re-exploration;
days) St-Onge 2018: not specified	Short-term hospitalization outcomes, including length of hospital stay and intensive care unit (ICU) stay.

INTERNAL VALIDITY

Overall QUALITY of the systematic review (descriptive)

Rating (AMSTAR): Moderate

Description: More than one non-critical weakness – the systematic review has more than one weakness but no critical flaws. It *may* provide an accurate summary of the results of the available studies that were included in the review.

No reference is made to a protocol, a priori design or pre-specified methods. Full list of excluded studies not provided and there is no mention of funding sources of the included studies.

Risk of bias of included studies: The overall risk of bias for included studies was judged by the review authors to be unclear or high. Noting that findings and interpretations in this review are limited by the quality and quantity of the available evidence. On one hand, even excluding retrospective and observational studies, most RCTs also have little or no allocation concealment or blinding of clinical personnel, which contributed to the high procedural bias in these trials. Furthermore, control groups in almost all trials had no standard transfusion protocols, random sequence generation, allocation concealment, or blinding. Publication bias are also high for blood loss, FFP transfusion and PLT transfusion.

RESULTS:

Outcome No. patients (No. trials)	ROTEM n/N (%) Mean ± SD (n)	Standard of Care n/N (%) Mean ± SD (n)	Risk estimate (95% CI)	Statistical significance p-value Heterogeneity ^a l ² (p-value)
Mortality (latest follow-up) N = NR (5 RCTs, 3 Coh)	132/2680 (5)	124/2293 (5.4)	RR 0.83 (0.53, 1.30)	No significant difference p = 0.4 Moderate heterogeneity $l^2 = 25\%$
RCTS ONLY	12/2/0 (4.4)	23/259 (8.9)	RR 0.5 (0.26, 0.96)	
St-Onge 2018	7/112 (6.3)	4/112 (3.6)	RR 1.75 (0.53, 5.81)	No difference, $p = 0.35$
Kuiper 2019 * CABG subgroup *propensity-score matched cohort	4/101 (4.0) 0/96 (0)	7 /101 (6.9) 2/72 (2.7)	RR 0.57 (0.17, 1.89)	ρ = 0.537 ρ = 0.185
Massive bleeding ^b or need for massive transfusion ^c N = 5755 (7 studies) Ak 2009	141/3149 (4.5)	172/2606 (6.6)	RR 0.71 (0.54, 0.93)	Favours intervention p = 0.01 Moderate heterogeneity l ² = 32%
Fassl 2013	19/155 (13)	12/41 (26)	RR 0.42 (0.22, 0.79)	
Karkouti 2016	853/3847	920/3555	RR 0.86 (0.79, 0.93)	
Spiess 1995 Circlauckas 2010	56/591 (9.5)	50/488 (10.2)	RR 0.92 (0.64, 1.33)	
Cörlinger 2011	27/2147 (126)	43/1718 (25)		
St-Onge 2018	12/112 (11)	23/112 (20.5)	RR 0.52 (0.27, 1.00)	
RBC transfusion volume, Units	Median [IQR] (n)	Median [IQR] (n)		Favours intervention
Kuiper 2019 d	0 [0, 1] (101)	0 [0, 2] (101)		p = 0.003
St-Onge 2018	0 [0, 2] (112)	1 [0, 4] (112)		p = 0.03
Kuiper 2019 (N = 202)	Mean (min-max) 0.6 (0, 8)	Mean (min-max) 1.8 (0, 19)		

STUDY DETAILS: Li 2	2019			
FFP transfusion volume, Units	Median [IQR] (n)	Median [IQR] (n)		Favours intervention
Kuiper 2019 d	0 [0, 0] (101)	0 [0, 0] (101)		p = 0.031
St-Onge 2018	0 [0,2] (112)	0 [0,4] (112)		p = 0.04
Kuiper 2019 (N = 202)	Mean (min-max) 0.3 (0, 6)	Mean (min-max) 0.8 (0, 14)		
PLT transfusion volume, Units	Median [IQR]	Median [IQR]		No significant difference
Kuiper 2019 d	O (O, O) (101)	O (O, O) (101)		p = 0.676
St-Onge 2018	0 [0, 10] (112)	5 [0, 10] (112)		p = 0.48
Kuiper 2019 (N = 202)	Mean (min-max) 0 (0, 3)	Mean (min-max) 0 (0, 6)		
RBC transfusion incidence N = NR (14 studies)	NR/NR	NR/NR	RR 0.87 (0.83, 0.91)	Favours intervention p < 0.01 Mild heterogeneity l ² = 11%
RCTs only			RR 0.89 (0.80,	
Kuiper 2019 (24 hr)	39/101 (38.6)	56/101 (55.4)	0.98)	Favours intervention p = 0.024
St Onge 2018	51/112 (45.5)	64/112 (57.1)		No difference <i>p</i> = 0.08
FFP transfusion incidence N = NR (14 studies)	NR/NR	NR/NR	RR 0.5 (0.31, 0.80)	Favours intervention p < 0.01 Substantial heterogeneity
RCTs only			RR 0 59 (0 42 0 82)	12 = 93%
Kuiper 2019 (24 hr)	7/101 (6.9)	19/101 (18.8)		Favours intervention p = 0.019
St Onge 2018	32/112 (28.6)	43/112 (38.4)		No difference p = 0.12
PLT transfusion incidence N = NR (14 studies)	NR/NR	NR/NR	RR 0.86 (0.73, 1.02)	No significant difference p = 0.08 Substantial heterogeneity
				l ² = 62%
RCTs only			RR 0.81 (0.74,	
Kuiper 2019 (24 hr)	20/101 (19.8)	16/101 (15.8)	0.90) ^e	No difference $p = 0.582$
St Onge 2018	54/112 (48.2)	61/112 (54.5)		$\frac{1}{2}$
Cryoprecipitate transfusion incidence				No significant difference p = 0.76
St-Onge 2018	29/112 (25.9)	31/112 (27.7)		
	1	1		1

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population with some caveats

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats

Additional comments

Authors conclusions:

The authors found that the mortality rate in the TEG/ROTEM group was lower than that in control group, but without statistically significant difference, either in overall studies or in RCTs. The authors found a statistically significant reduction of blood loss in favour of the TEG/ROTEM-guided algorithm in both overall studies and RCTs

STUDY DETAILS: Li 2019

The use of a TEG/ROTEM-guided algorithm had a significant beneficial effect on the transfusion requirements of RBC and FFP.

Though their analysis showed consistent benefits of viscoelastic testing on blood loss and transfusion rates, it failed to reach the same beneficial effects on patients' outcome including mortality, length of hospital stay and ICU stay, even rates of re-exploration and massive bleeding/transfusion.

List of included studies

RCTs: Ak 2009, Avidan 2004, Girdauskas 2010, Karkouti 2016, Kempfert 2011, Kultufan Turan 2006, Nuttall 2001, Paniagua 2011, Rauter 2007, Royston 2001, Shore-Lesserson 1999, Weber 2012, Westbrook 2009

Propsective cohort - Kuiper 2019,

Retrospective Cohort - Anderson 2006, Görlinger 2011, Spiess 1995, St-Onge 2018

Matched Case Control - Fassl 2013

CPB, cardiac surgery; Cl, confidence interval; FFP, fresh frozen plasma; ICU, intensive care unit; ITT, intention-to-treat; IQR, interquartile range; MD, mean difference; NR, not reported; PCC, prothrombin complex concentrate; PP, per-protocol; PLT, platelets; RBC, red blood cells; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation; TC, thrombocyte complex

a. The authors identified 13 RCTs, one prospective cohort study, four retrospective cohort studies, and one matched case control study. All but two were identified in other SRs. Only additonal data relating to Kuiper 2019 and St-Onge are data extracted here.

b. Defined as blood loss over 400 mL in the first hour after surgery or over 100 mL/hour for four consecutive hours; or drainage volume > 1000 mL within first 24 hours;

c. Defined as transfusion of more than 10 U of RBCs; or more than 20 U of any allogenic blood product

d. Units in 24 hours. Propensity-score matched cohort.

e. Favours intervention p < 0.01, I2 = 0%

STUDY DETAILS: Bugaev 2020

Citation

Bugaev N, Como J J, Golani G, Freeman J J, Sawhney J S, Vatsaas C J, Yorkgitis B K, Kreiner L A, Garcia N M, Abdel Aziz H, Pappas P A, Mahoney E J, Brown Z W, Kasotakis G. Thromboelastography and rotational thromboelastometry in bleeding patients with coagulopathy: Practice management guideline from the Eastern Association for the Surgery of Trauma. J Trauma Acute Care Surg. 2020. 89:999-1017. DOI: 10.1097/TA.00000000002944

Affiliation/Source of funds

Author affiliations: Tufts Medical Centre, Tufts University School of Medicine, Boston, Massachusetts; MetroHealth Medical Centre, Cleveland, Ohio; Soroka Medical Centre, Beer Sheva, Israel; TCU and UNTHSC School of Medicine, Fort Worth, Texas; Maine Medical Centre, Portland, Maine; Duke University School of Medicine, Durham, North Carolina; University of Florida College of Medicine—Jacksonville, Jacksonville, Florida; Case Western University School of Medicine, Cleveland, Ohio; Brody School of Medicine, East Carolina University, Greenville; Weill Cornell University, Doha, Qatar; College of Medicine, University of Central Florida, Orlando; Uniformed Services University of the Health Sciences, Bethesda;

Conflicts of interest: The authors declare no conflicts of interest.

Funding: Not reported.

Study design	Level of evidence	Location	Setting	
Systematic review and meta-analysis of 38 studies in total. In PICO 1, a total of 7 studies were selected including RCTs (2), retrospective studies (4) a prospective study (1).	1-111	Not reported	Trauma	
Intervention		Comparator		
Schochl 2011: ROTEM		Schochl 2011: No ROTEM		
Schaden 2012: ROTEM		Schaden 2012: No ROTEM		
Nardi 2015: ROTEM		Nardi 2015: No ROTEM		
Gonzalez 2016: ROTEM (RCT)		Gonzalez 2016: No ROTEM (RCT)		
Prat 2017: ROTEM		Prat 2017: No ROTEM		
Guth 2019: TEG		Guth 2019: No TEG		
Unruh 2019: ROTEM		Unruh 2019: No ROTEM		

STUDY DETAILS: Bugaev 2020 Population characteristics Schochl 2011: Severely injured patients with Injury Severity Score > 15 who required blood transfusions Guth 2019: Patients requiring any blood product transfusions Schaden 2012: Patients with burns Unruh 2019: Patients requiring MTP activation Gonzalez 2016: Patients requiring MTP activation Prat 2017: Severely injured patients with Injury Severity Score > 15 who required blood transfusions Nardi 2015: Severely injured patients with Injury Severity Score > 15 who required blood transfusions Length of follow-up **Outcomes measured** Databases searched: PubMed, Embase, Cochrane Library, Mortality Web of Science and Ovid Medline (from inception to June Blood product transfusions 2019) Need for additional haemostatic interventions INTERNAL VALIDITY **Overall QUALITY of the systematic review (descriptive)** Rating (AMSTAR): Moderate Description: More than one non-critical weakness - the systematic review has more than one weakness but no critical flaws. It may provide an accurate summary of the results of the available studies that were included in the review. Risk of bias of included studies: The overall quality of evidence was determined to be very low. RESULTS: [intervention] [comparator] Outcome Risk estimate (95% CI) Statistical significance No. patients n/N (%) n/N (%) p-value (No. trials) Mean ± SD (n) Mean ± SD (n) **Heterogeneity**^a I² (p-value) TEG/ROTEM vs no TEG/TOTEM Mortality 82/466 (17.6%) 158/1042 (15.2%) RR 0.75 (0.59, 0.95) Favours TEG/ROTEM N = 1488 (6 studies) p = 0.02No significant heterogeneity Prat 2017 4/85 (4.7%) 7/134 (5.2%) RR 0.90 (0.27, 2.99) $l^2 = 0\% (p = 0.60)$ Schochl 2011 6/80 (7.5%) 60/601 (10%) RR 0.75 (0.34, 1.68) Gonzalez 2016 11/56 (19.6%) 20/55 (36.4%) RR 0.54 (0.29, 1.02) Nardi 2015 13/96 (13.5%) 26/130 (20%) RR 0.68 (0.37, 1.25) Unruh 2019 15/47 (32.0%) 11/20 (55%) RR 0.58 (0.33, 1.03) Guth 2019 33/102 (32.4%) 34/102 (33.3%) RR 0.87 (0.66, 1.44) Number of RBCs N = 480 N = 979 SMD -0.38 (-0.64, -0.12) Favours TEG/ROTEM

transfused, Units				p = 0.004
N = 1459 (7 studies)				Significant heterogeneity
				l ² = 74% (p = 0.0008)
Schaden 2012	3.1±1.6 (14)	4.3±2.2 (16)	SMD –0.85 (–1.60, –0.10)	
Unruh 2019	6±5.2 (47)	11±3.7 (20)	SMD –1.03 (–1.58, –0.47)	
Gonzalez 2016	9.5±8.1 (56)	11±8.1 (55)	SMD –0.18 (–0.56, 0.19)	
Prat 2017	2±2.2 (85)	2±1.5 (55)	SMD 0.00 (-0.34, 0.34)	
Guth 2019	2±3 (102)	6±7.4 (102)	SMD -0.71 (-0.99, -0.42)	
Nardi 2015	6.5±4.8 (96)	8.1±6.7 (130)	SMD -0.27 (-0.53, -0.00)	
Schochl 2011	5.5±7 (80)	6±5.2 (601)	SMD –0.09 (–0.33, 0.14)	
Number of PLTs	N = 199	N = 205	MD –0.44 (–1.05, 0.17)	No significant difference
transfused, Units				p = 0.16
N = 404 (3 studies)				Moderate heterogeneity
				l ² = 55% (p = 0.11)
Nardi 2015	2.7±4.8 (96)	4.2±5.9 (130)	MD –1.50 (–2.90, –0.10)	
Gonzalez 2016	1±1.5 (56)	1±1.5 (55)	MD 0.00 (–0.56, 0.56)	
Unruh 2019	1.5±1.5 (47)	2±0.7 (20)	MD –0.50 (–1.03, 0.03)	

STUDY DETAILS: Bugaev 2020

	•			
Number of FFP	N = 386	N = 441	SMD -0.29 (-0.91, 0.34)	No significant difference
transfused, Units				p = 0.36
N = 827 (5 studies)				Significant heterogeneity
				l ² = 94 (p < 0.00001)
Unruh 2019	4.5±4.1 (47)	4±4.1 (20)	SMD 0.12 (-0.40, 0.64)	
Gonzalez 2016	5±4.4 (56)	6±3.7 (55)	SMD -0.24 (-0.62, 0.13)	
Guth 2019	0.5±1.5 (102)	5±5.2 (102)	SMD –1.17 (–1.47, –0.87)	
Prat 2017	2±2.6 (85)	1±1.5 (134)	SMD 0.50 (0.22, 0.77)	
Nardi 2015	4.2±4.6 (96)	9±9.5 (130)	SMD -0.61 (-0.88, -0.34)	

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is directly generalisable to the Australian population with some caveats. The studies included patients requiring MTP, patients with burns and severely injured patients. The studies cover a wide range of trauma patients.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats.

Additional comments

Authors conclusions:

We conditionally recommend using TEG/ROTEM to guide blood transfusions instead of traditional coagulation parameters in each of the following three groups: adult trauma patients, adult surgical patients, and adult critically ill patients with ongoing haemorrhage and concern for coagulopathy.

List of relevant included studies:

Schaden 2012, Unruh 2019, Gonzalez 2016, Prat 2017, Guth 2019, Nardi 2015, Schochl 2011

CI, confidence interval; FFP, fresh frozen plasma; MD, mean difference; MTP, massive transfusion protocol; PLT, platelets; pRBC, packed red blood cells; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation; SMD, standard mean difference

a.Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if Phet
 > 0.1 and I2 < 25%; (ii) mild heterogeneity if I2 < 25%; moderate heterogeneity if I2 between 25–50%; substantial heterogeneity I2 > 50%.

STUDY DETAILS: Amgalan 2020

Citation

Amgalan A, Allen T, Othman M, Ahmadzia H K. Systematic review of viscoelastic testing (TEG/ROTEM) in obstetrics and recommendations from the women's SSC of the ISTH. J Thromb Haemost. 2020; 18:1813-1838. DOI: 10.1111/jth.14882

Affiliation/Source of funds

Author affiliations: Georgetown University School of Medicine, Washington, DC, USA; Department of Anesthesiology, Duke University Hospital, Durham, NC, USA; Department of Biomedical and Molecular Sciences, School of Medicine, Queen's University, Kingston, ON, Canada; School of Baccalaureate Nursing, St. Lawrence College, Kingston, ON, Canada; Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA

Conflicts of interest: The authors declared no conflicts of interest

Funding: Not reported

Study design	Level of evidence	Location	Setting		
Systematic review of 93 studies (1 RCT)	1/11-1∨	Not reported	Obstetrics		
Intervention		Comparator			
ROTEM		No ROTEM	No ROTEM		
Collins 2017: Patients transfused with fibrinogen concentrate if FIBTEM \leq 15 mm		Collins 2017: Patients tra 15 mm	Collins 2017: Patients transfused with placebo if FIBTEM ≤ 15 mm		
Mallaiah 2015: Fibrinogen phase (ROTEM-guided)		Mallaiah 2015: 'Shock Pa FFP, & 1 adult dose of P deficits	Mallaiah 2015: 'Shock Pack' (4 units of RBCs, 4 units of FFP, & 1 adult dose of PLTs) used to correct coagulation deficits		
Population characteristics					

Collins 2017: Women aged ≥ 18 years and ≥ 24 weeks gestation with ongoing major PPH (1000-1500 mL blood loss) Snegovskikh 2017: women with severe PPH

STUDY DETAILS: Amgala	an 2020					
Mallaiah 2015: Women who h	nad a MOH (estima	ited blood lo	ss >1500n	nL) associated with co	agulopathy (FIBTEM A5 < 12	
mm, indicative of a plasma f	Ibrinogen level of 2	2 g/l).				
McNamara 2019: Women wit	IN MOH		-			
Length of follow-up			Outcom	nes measured		
Databases searched: Ovid Medline (from 1989 to 2020)			Collins 2	2017: NR		
		Snegovskikh 2017: ICU admissions				
			Mallaiah 2015: TACO			
				ara 2019: number of ur	nits; TACO	
INTERNAL VALIDITY						
Overall QUALITY of the syst	ematic review (de	escriptive)				
Rating (AMSTAR): Critically lo	W					
Description: More than one of critical flaw and should not b	critical flaw with or be relied on to prov	without nor vide an accu	n-critical v rate and c	veaknesses – the revie comprehensive summ	w has more than one ary of the available studies.	
Risk of bias of included stud undermined by poor Study of	<i>ies:</i> The authors no design and/or risk o	ted that a lir of bias.	mitation c	of TEG/ROTEM studies	is that several studies are	
RESULTS:						
Outcome	[intervention]	[compara	ator]	Risk estimate	Statistical significance	
No. patients	n/N (%)	n/N (%)		(95% CI)	<i>p</i> -value	
(No. trials)	Mean ± SD	Mean ± S	D		Heterogeneity	
					l² (p-value)	
ROTEM versus no ROTEM	1					
Morbidity	Patients given tr	eatment gui	ided by R	OTEM received	NR	
N = 20 349 (1 study)	significantly less	frequent tra	nstusions 11 admiss	ions and had shorter		
Snegovskikh 2017	hospitalizations	compared w	ith those	who were managed		
	with the more tra	aditional em	piric prot	ocol.		
Morbidity	Infusion of FC at	FIBTEM A5	≤ 15 mm d	lid not improve	No results	
N = 663 (1 study)	outcomes in PPH	H. Findings s	uggest th	at fibrinogen		
Collins 2017	replacement is n	ot required	if the FIB	FEM A5 is > 12 mm or		
	cannot be exclud	1 - 2 9/L, but ded.	an enect	below these levels		
ТАСО					Favours ROTEM	
N = 348 (2 studies)						
N = 255, McNamara 2019	NR	NR		NR	p < 0.002	
N = 93, Mallaiah 2015	0%	9.5%		NR	p = 0.038	
RBC transfused, Units						
N = 255 (1 study)					Favours ROTEM	
McNamara 2019	NR	p < 0.0001				
Transfusion requirements	NR	NR		NR	Favours ROTEM	
1 study, N = 93						
Mallaiah 2015						
total blood components					p = 0.004	
plasma					p < 0.0001	
CRYO					p < 0.0001	
massive transfusion (≥ 6 units) of RBCs					p = 0.0299	
EXTERNAL VALIDITY						
Generalisability (relevance	of the study popu	lation to th	e Guidelii	nes target population)	
The evidence is directly gene	eralisable to the Au	ıstralian pop	ulation.			
Applicability (relevance of t	the evidence to th	e Australia	health d	are system)		

The evidence is applicable to the Australian healthcare context.

STUDY DETAILS: Amgalan 2020

Additional comments

Authors conclusions:

The 93 studies included in this review demonstrate potential utility of TEG/ROTEM in obstetrics, but several of them had limitations in their Study design and/or their results were confounded by biases. The most robust evidence supporting the use of viscoelastic tests in obstetrics is for PPH, but its potential in managing hypercoagulable conditions is relatively under studied. Based on our review of the literature at this time, the routine use of ROTEM may best serve a role in clinically guiding transfusion therapy in obstetrics and identifying patients at risk for severe haemorrhage. Further studies, ideally large controlled multicentre clinical trials, are needed to broaden the applicability of TEG/ROTEM in obstetrics, validate TEG/ROTEM-guided approaches and design hospital protocols, and determine their effects on clinical outcomes to reduce morbidity and mortality in obstetrics.

List of relevant included studies:

Snegovskikh 2017, McNamara 2019, Mallaiah 2015, Collins 2017

Cl, confidence interval; ICU, intensive care unit; MOH, massive obstetric haemorrhage; NR, not reported; PPH, post-partum haemorrhage; SD, standard deviation; TACO, Transfusion associated circulatory overload; TXA, tranexamic acid

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

Randomised controlled trials

STUDY DETAILS: Gonzalez 2016 (NCT01536496)

Citation

Gonzalez E, Moore EE, Moore HB, Chapman MP, Chin TL, Ghasabyan A, et al. Goal-directed Hemostatic Resuscitation of Trauma-induced Coagulopathy: A Pragmatic Randomized Clinical Trial Comparing a Viscoelastic Assay to Conventional Coagulation Assays. Annals of surgery. 2016;263(6):1051-9.

NCT01536496: Study results are published here: https://clinicaltrials.gov/ct2/show/results/NCT01536496

Affiliation/Source of funds

No declarations of conflicts of interest available.

The study was sponsored by: Denver Health and Hospital Authority in Collaboration with Haemonetics Corporation. Information provided by (Responsible Party): Ernest E. Moore, MD, Denver Health and Hospital Authority

Study design Level of evidence		Location	Setting		
Randomised controlled II trial		Denver, Colorado; USA	Single centre, trauma setting		
Intervention		Comparator			
Blood product transfusion based on rapid thromboelastography (r-TEG) results. The current institutional massive transfusion protocol will be followed		Blood product transfusion based on conventional coagulation tests (aPTT, INR, fibrinogen level, D-dimer) to diagnose and describe post-injury coagulopathy and to guide blood product replacement. The current institutional massive transfusion protocol will be followed			

Population characteristics

Adults patients (aged >18 yrs) with blunt or penetrating trauma sustained < 6 hours before admission, with Injury Severity Score greater than 15, likely to require transfusion of RBC within 6 hours from admission as indicated by clinical assessment.

The median age (IQR) was 30 (24 to 43), and 70.3% male. The number of patients with blunt vs penetrating trauma was not reported.

Length of follow-up	Outcomes measured
Lost to follow up and follow up details not reported.	28 Day In-hospital Mortality
Mortality is reported at 28 days, in hospital.	Deaths Specified as Early Mortality (<6 Hours Post-injury)
Timeframe of follow up for AEs is up to 28 days of	and Delayed Mortality (6-24 Hours Post-injury).
hospitalisation	Deaths Related to Coagulopathic Bleeding Based Upon
	Clinical Impressions of the Treating Surgeons and Review
	of Operative Records and Outcome (Hours Since Injury).
	Composition and Quantity of Blood Products Transfused at 24 Hours Post-injury

STUDY DETAILS: Gonza	alez 2016 (NCT0)	1536496)				
	Number of Participants With Multiple Organ Fa (MOF) During This Hospitalization.				Multiple Organ Failure ation.	
INTERNAL VALIDITY						
Overall risk of bias (descriptive)						
Rating: High						
Description: The study has peer reviewed journal. Det assessment not reported.	s plausible bias tha ails regarding rand	at seriously wea domisation, allo	akens confic ocation cond	lence in the results cealments and blir	s. Study is not published in a nding of outcomes	
RESULTS						
Population analysed	Intervention			Comparator		
Randomised	57			57		
Efficacy analysis (ITT)	56			55		
Efficacy analysis (PP)	56			55		
Safety analysis	56			55		
Outcome	Intervention n/N (%)	Comparato n/N (%)	or	Risk estimate (95% CI)	Statistical significance p-value	
	Mean ± SD	Mean ± SD				
TEG-r versus SoC	1 .			1		
Mortality (28 day)	11/56 (19.6)	20/55 (36.4))		Favours Intervention p = 0.049	
Mortality (deaths < 6 hrs from injury)	4/56 (7.1)	11/55 (20)			Not reported	
Mortality (deaths 6 to 24 hrs from injury)	7/56 (12.5)	8/55 (14.5)			Not reported	
Deaths due to coagulopathic bleeding	5/56 (8.9)	11/55 (19.6)			Not reported	
Deep vein thrombosis	8/56 (14.3)	6/55 (10.9)			p = 0.599	
Pulmonary embolism	1/56 (1.8)	0/55 (0)			p = 1.01	
MOF	2/56 (3.6)	3/55 (5.5)			Not reported	
RBC transfusion volume, Units	Median (IQR) 9.5 (5, 16)	Median (IQ 11.0 (6, 16)	PR)		Not reported	
Plasma transfusion volume, units	Median (IQR) 5 (3 to 9)	Median (IQ 0 (4 to 9)	IR)		Not reported	
Cryoprecipitate transfusion volume, units	Median (IQR) 0 (0 to 2)	Median (IQ 1.0 (0 to 2)	R)		Not reported	
Platelet transfusion volume, units	Median (IQR) 1 (0 to 2)	Median (IQ 1 (0 to 2)	R)		Not reported	
EXTERNAL VALIDITY						
Generalisability (relevance of the study population to the Guidelines target population)						
The evidence is directly generalisable to the Australian population with some caveats						
Applicability (relevance of the evidence to the Australian health care system)						
The evidence is probably applicable to the Australian healthcare context with some caveats						

Additional comments

Authors conclusions: The authors conclusions were not available.

aPPT, activated partial thromboplastin time; CI, confidence interval; INR, international normalised ratio; ITT, intent to treat; MOF, multiple organ failure; MRA, magnetic resonance angiography; MRI, magnetic resonance imaging; NA, not applicable; NR, not reported; PP, per-protocol; RBC, red blood cell; RCT, randomised controlled trial

STUDY DETAILS: Baksaas-Aasen 2020

Citation

Baksaas-Aasen K, Gall L S, Stensballe J, Juffermans N P, Curry N, Maegele M, Brooks A, Rourke C, Gillespie S, Murphy J, Maroni R, Vulliamy P, Henriksen H H, Holst Pedersen K, Kolstadbraaten K M, Wirtz M R, Kleinveld J B, Schafer N, Chinna S, Davenport R A, Naess P A, Goslings J C, Eaglestone S, Stanworth S, Johansson P I, Gaarder C and Brohi K. Viscoelastic haemostatic assay augmented protocols for major trauma haemorrhage (ITACTIC): a randomized, controlled trial. Intensive Care Med. 2021. 47:49-59. https://doi.org/10.1007/s00134-020-06266-1

Affiliation/Source of funds

Author affiliations: Oslo University Hospital & University of Oslo, Oslo, Norway; Centre for Trauma Sciences, Queen Mary University of London, Blizard Institute, 4 Newark Street, London El 2AT, UK; Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Amsterdam University Medical Centres, Amsterdam, The Netherlands; Oxford University Hospital NHS Trust, Oxford, UK; Cologne-Merheim Medical Centre, University of Witten/Herdecke, Cologne, Germany; Nottingham University Hospitals NHS Trust, Nottingham, UK; Queen Mary University of London, London, UK; NHS Blood and Transplant, Bristol, UK.

Conflicts of interest: Astra Zeneca, Bayer, CSL Behring, IL-Werfen/TEM International, LFB Biomedicaments, Portola Inc., Haemonetics Corp., TEM International, Johnson and Johnson, Octapharma AG., Nycomed. And Bayer.

Funding: The study was funded by the European Commission. Both TEM® International GmbH and Haemonetics® Corporation were collaborating organizations in the program.

Study design	Level of evidence	Location	Setting		
Randomised controlled	Ш	Denmark	Multicentre, trauma		
trial		The Netherlands			
		Norway			
		Germany			
		UK			
Intervention		Comparator			
Viscoelastic Haemostatic Ass	says (VHA)	Conventional Coagulation Tests (CCT)			
All patients received their loc	al hospital's standard MHP,	All patients received their loc	al hospital's standard MHP,		
based on the empiric deliver	y of tranexamic acid, blood	based on the empiric deliver	y of tranexamic acid, blood		
components delivered in a li	ited infusion of crystalloid	components delivered in a I:	ited infusion of crystalloid		
fluids.		fluids.			
Population characteristics					
Adult trauma patients with c initiated, randomised within department.	linical signs of bleeding activa 3 hours of injury and maximur	ting the local MHP and if RBC m of 1 hour after admission into	transfusion had been o the emergency		
Length of follow-up		Outcomes measured			
Drop-out rate: 15/411 patients (3.6%)		Mortality (at 6 hrs, 24 hrs, 28 days, 90 days)			
Missing data: Participants with missing data for a		Total blood components			
measure were excluded from	n any statistical comparisons	Symptomatic thromboembolic events			
regarding that measure.		Multiple organ dysfunction			
		Serious adverse events (infection, thromboembolic,			
		ischemic, organ failure, acute	e kidney injury, acute lung		
		Injury, new onset major bleed	ding, cardiac, neurological,		
Overall risk of bias (descript	tive)				
Ratina: Hiah					

Description: The study has plausible bias that seriously weakens confidence in the results.

STUDY DETAILS: Baksaas-Aasen 2020					
RESULTS					
Population analysed	Intervention		Comparator		
Randomised	201		195		
Efficacy analysis (ITT)	201		195		
Efficacy analysis (PP)	150		163		
Safety analysis	201		195		
Outcome	Intervention	Comparator	Risk estimate	Statistical significance	
	n/N (%) Mean ± SD	n/N (%) Mean ± SD	(95% CI)	<i>p</i> -value	
VHA versus CCT	1	I	1		
Mortality, 6 hrs	22/201 (11%)	22/195 (11%)	OR 0.97 (0.52,1.80)	No significant difference	
N = 396				p = 0.915	
Mortality, 24 hrs	29/201 (14%)	33/195 (17%)	OR 0.83 (0.48, 1.42)	No significant difference	
N = 396				p = 0.495	
Mortality, 28 days N = 395	50/201 (25%)	55/194 (28%)	OR 0.84 (0.54, 1.31)	No significant difference p = 0.435	
Mortality, 90 days	53/179 (29%)	56/177 (31%)	OR 0.91 (0.58, 1.42)	No significant difference	
N = 356				p = 0.678	
Death from	13/51 (25%)	17/56 (30%)	OR 0.78 (0.34, 1.82)	No significant difference	
exsanguination				p = 0.576	
N = 107					
Morbidity, MOD	141/164 (86%)	124/159 (84%)	OR 1.14 (0.62, 2.10)	No significant difference	
N = 323				p = 0.668	
Thromboembolic events	15/201 (7.5%)	22/195 (11.3%)	NR	NR	
N = 396					
Symptomatic	17/201 (9%)	27/195 (14%)	OR 0.57 (0.31, 1.08)	No significant difference	
thromboembolic events	,,			p = 0.088	
N = 396					
Infection (SAE)	29/201 (14.4%)	30/195 (15.4%)	NR	NR	
N = 396					
Ischemic (SAE)	6/201 (3.0%)	0/195	NR	NR	
N = 396					
Organ failure (SAE)	9/201 (4.5%)	5/195 (2.6%)	NR	NR	
N = 396					
Acute kidney injury (SAE)	6/201 (3.0%)	6/195 (3.1%)	NR	NR	
Acute lung injuny (SAE)	8/201 (4.0%)	5/195 (2.6%)	ND	ND	
N = 396	0/201 (4.070)	3/133 (2.070)			
New onset major	6/201 (3.0%)	9/195 (4.6%)	NR	NR	
bleeding (SAE)	-, (,)	-,,			
N = 396					
Cardiac (SAE)	10/201 (5.0%)	6/195 (3.1%)	NR	NR	
N = 396					
Neurological (SAE)	4/201 (2.0%)	0/195	NR	NR	
N = 396					
Other (SAE)	8/201 (4.0%)	10/195 (5.1%)	NR	NR	
N = 396					

STUDY DETAILS: Baksas-Aasen 2020 Massive transfusion at 24 hours 53/201 (26%) 55/195 (28%) OR 0.91 (0.59, 1.42) No significant difference p = 0.682 N = 396 P 0.682 P 0.682 EXTERNAL VALIDITY Externalisability (relevance of the study population to the Guidelines target population) Fermionical contents target population)

The evidence is directly generalisable to the Australian population. The RCT was conducted in large hospitals with 396 patients.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is directly applicable to the Australian healthcare context. The studies were conducted in countries with similar healthcare systems to Australia.

Additional comments

Authors conclusions:

When standard care is delivered to bleeding trauma patients, with empiric balanced transfusion therapy and intensive CCT monitoring, VHAs identify more coagulation deficits and deliver additional haemostatic interventions. However, all patients do not benefit from this approach and further research is required to identify injury types and physiologies that may benefit from this approach. Additional analyses should also explore the coagulation deficits identified by VHA alone, and the response of the coagulation system to the algorithm-prescribed haemostatic agents.

CCT, conventional coagulation tests; CI, confidence interval; IQR, interquartile range; MHP, massive haemorrhage protocol; NR, not reported; OR, odds ratio; RBC, red blood cells; RCT, randomised controlled trial; SAE, serious adverse event; SD, standard deviation; VHA, viscoelastic haemostatic assays

Observational / cohort studies

STUDY DETAILS: Wang 2017							
Citation							
Wang, H., Robinson, R. D., P N. R. (2017). Traumatic Abdo Blood Component Therapy.	hillips, J. L., Ryon, A., S minal Solid Organ In . J Clin Med Res, 9(5),	Simpson, S. njury Patier 433-438. d	., Ford, J. R., nts Might Be oi:10.14740/j	Umejiego, J., Duar enefit From Throm ocmr3005w	e, T. M., Putty, B., & Zenarosa, boelastography-Guided		
Affiliation/Source of funds							
The authors declared no co	nflicts of interest, and	d no fundin	ng was recei	ved.			
Study design	Level of evidence		Location		Setting		
Retrospective cohort	-2		Texas, USA	A	Single centre, Trauma		
Intervention Cor				Comparator			
TEG guided blood component therapy Standard of care							
			(TEG-guide	ed BCT not strictly	managed)		
Population characteristics							
Patients sustaining traumat	tic liver and/or spleer	n injuries w	ere enrollec	ł.			
71% Caucasian, 22% African	American						
81% Blunt injury	tandad ta ba aldar la	warinitial	ovetalia blaz				
Longth of follow up	lended to be older, ic	ower initial		ba pressure, and m	lore severe injury severity.		
June 2012 December 2015			Blood com	popopt transfusio			
Julie 2012-December 2015			Length of	etav	TIS (PRDCS, FFP, PLTS, CRTO)		
			Length of stay $(< 24 \text{ br} > 24 \text{ br})$				
Method of analysis			mnospital				
Pearson's Chi-square (χ2) ar	nalysis was used to ar	nalyse diffe	rences in re	lative frequencies	among groups for		
categorical variables. Stude between groups for continu	nt's t-tests and Wilco Jous variables.	oxon rank-s	sum (Mann-'	Whitney) test were	e used to test differences		
INTERNAL VALIDITY							
Overall risk of bias (descrip	otive)						
Rating: Serious Description: The study is too blood transfusion requirem has a small sample size (N<	o problematic and do ents. Concerns regar 100 in each group).	bes not pro ding select	vide any use tion bias and	eful evidence with d inability to contro	regards to mortality and ol confounding. This study		
RESULTS	0 17						
Population analysed	Intervention			Comparator			
Available	86			80			
Analysed	86			80			
Outcome	Intervention n/N (%)	Compar n/N (%)	ator	Risk estimate (95% CI)	Statistical significance p-value		
	Mean ± SD (n)	Mean ±	SD				
TEG vs Soc							
Mortality, in hospital (total)	12/86 (14)	19/80 (15)		NR	No significant difference NR		
DPC transfured limits							
N = 166	4 ± 7 (86)	9 ±10 (80)		NR	p < 0.01		
FFP transfused, Units	1 ± 5 (86)	5 ± 6 (80)	NR	Favours intervention		
		20115	(00)		ρ < 0.01		
N = 166	U.4 ± I.5 (86)	2.9 ± 4.8	(80)		p < 0.01		
CRYO transfused, Units	0.1 ± 0.5 (86)	0.3 ± 1.2 ((80)	NR	No significant difference		
N = 166				NR			
--	--	--	--	----	--	--	--
EXTERNAL VALIDITY							
Generalisability (relevance of the study population to the Guidelines target population)							
The evidence is directly generalisable to the Australian population with some caveats							
Applicability (relevance of the evidence to the Australian health care system)							
The evidence is probably applicable to the Australian healthcare context with some caveats							
Additional comments							
Authors conclusions:							

Traumatic abdominal solid organ (liver and/or spleen) injury patients receiving blood transfusion might benefit from TEG-guided blood component transfusions indicated by less blood products used and associated with shortened hospital stay amongst the cohort. The authors acknowledged the limitations of the study due to small sample size, limited information accuracy, missing data and potential selection bias.

CI, confidence interval; CRYO, cryoprecipitate; FFP, fresh frozen plasma; ITT, intention-to-treat; NR, not reported; PRBC, packed red blood cells; RCT, randomised controlled trial; SD, standard deviation

E9 Cell salvage (Question 9)

Systematic reviews/meta-analyses

STUDY DETAILS: Shantikumar 2011

Citation

Shantikumar, S., Patel, S., & Handa, A. (2011). The role of cell salvage autotransfusion in abdominal aortic aneurysm surgery. *European Journal of Vascular & Endovascular Surgery*, 42(5), 577-584. doi:https://dx.doi.org/10.1016/j.ejvs.2011.04.014

Affiliation/Source of funds

UK John Radcliffe Hospital, Oxford; Wycombe Hospital, High Wycombe The authors declared they had no conflicts of interest or funding source.

Study design	Level of evidence	Location*	Setting		
SR of available evidence of	Level I / III	Markovic 2009: Serbia	Vascular surgery		
any study type		Posacioglu 2002:	Markovic 2009: SC		
		Turkey	Posacioglu 2002: SC		
		Shuhaiber 2003: UK	Shuhaiber 2003: SC		
		Tawfick 2008: Germany	Tawfick 2008: SC		
		Serracino-Inglott 2005: UK	Serracino-Inglott 2005: regional database		
		* Details retrieved from primary studies			
Intervention		Comparator			
Five non-randomised controlled studies reported the role of cell salvage in ruptured aneurysm repairs. Only these studies are included here as per the PICO criteria for question 9 (see comments below). <i>Cell salvage</i> No explicit restriction on any parameters. Individual studies had different transfusion thresholds: Markovic 2009: Hb < 10g/dL Posacioglu 2002: Hct < 28% Shuhaiber 2003: Hb < 10g/dL Tawfick 2008: Hb < 8.5g/dL Serracino-Inglott 2005: not defined		No cell salvage/any			
studies, the results could not	be pooled.				
Population characteristics					
Patients undergoing abdomi Characteristic of patients in i Noted there was no mention	nal-aortic aneurysm (AAA) rep ncluded studies not reported. as to the location of the aneur	air, excluding procedures ysms in Tawfick 2008.	for aorto-occlusive disease (AOD).		
Length of follow-up		Outcomes measured			
Databases searched: PubMee	d, Embase, Cochrane	Transfusion threshold, blood-product use, proportion of			
Search date: from database i	nception to August 2010	patients transfused, complications, ICU stay, and hospital stay.			
Limited to English language					
INTERNAL VALIDITY					
Overall QUALITY of the syst	ematic review (descriptive)				
Rating (AMSTAR): Critically lo Description: More than one o flaw and should not be relied Risk of bias of included studi	w ritical flaw with or without non I on to provide an accurate and es: The study authors did not a	-critical weaknesses – the I comprehensive summary ssess risk of bias of the inc	review has more than one critical ⁄ of the available studies. luded studies and did not		
consider this in their analysis. Justifications for exclusion of articles was not provided.					

STUDY DETAILS: Shantikumar 2011

RESULTS:								
Outcome	Cell salvage	No cell salvage	Risk	Statistical significance				
No. patients (No. trials)	n/N (%)	n/N (%)	estimate	<i>p</i> -value				
	Mean ± SD (n)	Mean ± SD (n)	(95% CI)	Heterogeneity ^a				
				l² (p-value)				
Mortality								
Posacioglu 2002	NR	NR	NR	NR No significant difference				
Serracino-Inglott 2005	NR/40 (76)	NR/114 (56)	NR	NR Favours cell salvage ^e				
Post-operative complications								
Serracino-Inglott 2005	NR	NR	NR	NR No significant difference				
Mean red cell transfusion (units)	Est. 3.6	Est. 7.0	NR					
Markovic 2009	0.5 ± NR (30)	2.2 ± NR (30)	NR	p = 0.009 Favours cell salvage				
Posacioglu 2002	3.6 ± NR (40)	5.8 ± NR (16)	NR	p = 0.026 Favours cell salvage ^b				
Serracino-Inglott 2005	4 ± NR (40)	7 ± NR (114)	NR	p < 0.001 Favours cell salvage ^c				
Shuhaiber 2003	8 ± NR (4)	9 ± NR (21)	NR	NR No significant difference				
Tawfick 2008	$6 \pm NR(27)$	$12 \pm NR(28)$	NR	p < 0.001 Favours cell salvage ^d				
Mean FED (units)								
Posacioglu 2002	15 + NR (40)	45 + NP (16)	ND	$p = 0.006^{b}$				
Tawfick 2008	ND (27)	ND (28)		NP No significant difference				
Moon DLT (units)								
Tawfick 2008	NR (27)	NR (28)	NR	NR No significant difference				
Length of hospital stay								
Posacioglu 2002	NR	NR	NR	NR Shorter in the CS group				
Tawfick 2008	NR	NR	NR	NR Shorter in the CS group				
Additional data from prima	ry studies retrieved							
Mortality, any timepoint up to 30 days								
Markovic 2009	12/30 (40)	14/30 (46.6)	NR	p = 0.062 No difference ^f				
Posacioglu 2002	16/40 (40)	8/16 (50)	NR	p = 0.495 No difference ^f				
Tawfick 2008	6/27 (22)	9/28 (32)	NR	NR				
Serracino-Inglott 2005	NR/40 (68)	NR/114 (51)	NR	p = 0.07 No difference				
Serracino-Inglott 2005 °	NR (79)	NR (56)	NR	p = 0.01 Favours cell salvage				
Mortality, 30 days Shuhaiber 2003	Given there were only four patients in the intervention group, no meaningful difference in mortality between groups could be observed. Overall, 10/25 (40%) patients in the study cohort died							
Mortality, intraoperative Markovic 2009	7/30	4/30	NR					
Mortality, postoperative Markovic 2009	5/30 (16.67)	10/30	NR					
Postoperative	Data were presente	d for entire study coh	ort that includ	des elective AAA and AOD.				
complications Marcovic 2009	The authors noted r complications, mult bleeding, colon isch	The authors noted no significant difference between study groups for transfusion-related complications, multi-organ failure; stroke, myocardial infarction, wound infection, bleeding, colon ischemia, respiratory failure, renal failure, or reoperation.						
Postoperative complications	Given there were or in complications co	nly four patients in the uld be observed.	e intervention	group, no meaningful difference				
Shuhaiber 2003	in complications could be observed. Overall, 14/25 (56%) patients had major complications including haemorrhage and anastomotic leak, infection, non-graft thrombosis, embolism, myocardial infarction, arrythmia, cardiac failure, impaired renal function, and respiratory failure.							

STUDY DETAILS: Shantikumar 2011							
Postoperative complications Tawfick 2008	Data were presented for entire study cohort that includes elective and emergency AAA. The authors noted no significant difference between study groups for respiratory complications (ARDS, pneumonia, atelectasis) or cardiac complications (arrythmias, ischemic cardiac event). A significant effect favouring no cell salvage observed for need to renal dialysis ($p = 0.037$).						
Postoperative respiratory complications Posacioglu 2002	16/40 (40)	2/16 (12.5)	NR	p = 0.047 Favours no cell salvage			
Postoperative renal complications Posacioglu 2002	10/40 (25)	2/16 (12.5)	NR	p = 0.475 No difference			
Postoperative GI complications Posacioglu 2002	4/40 (10)	1/16 (6.25)	NR	p = 1.00 No difference			
Re-operation Posacioglu 2002	6/40 (15)	2/16 (12.5)	NR	p = 0.588 No difference			
Intraoperative RBC transfusion volume, mL Markovic 2009	913.8 ± 602 (30)	1146.3 ± 595 (30)	NR	p = 0.038 Favours cell salvage			
Postoperative RBC transfusion volume, mL Markovic 2009	976.3 ± 927 (30)	1609.6 ± 998 (30)	NR	p = 0.0097 Favours cell salvage			
Total allogenic RBC transfusion volume, mL Markovic 2009 Shuhaiber 2003	1890.1 ± 1186 (30) 2800 ± 857 (4)	2755.9 ± 1265 (30) 3161 ± 2155 (21)	NR NR	p = 0.0089 Favours cell salvage p = NR No significant difference			
Total RBC transfusion volume, units							
Posacioglu 2002 Tawfick 2008 Serracino-Inglott 2005	5.8 ± 3.84 (40) 6 (range 0–34) (27) 4 (range 0–24) (40)	3.63 ± 2.87 (16) 12 (range 3–38) (28) 7 (range 0–29) (114)	NR NR NR	p = 0.026 Favours no cell salvage p = NR p < 0.01 Favours cell salvage			
Intraoperative plasma transfusion volume, mL	605 0 × 600 (70)		ND	20215			
Postoperative plasma transfusion volume, mL Markovic 2009	595.6 ± 1021 (30)	817.0 ± 551 (30) 828.8 ± 640 (30)	NR	p = 0.024 Favours cell salvage p = 0.041 Favours cell salvage			
Total allogenic plasma transfusion volume, mL Markovic 2009	1223.4 ± 1223 (30)	1645.8 ± 947 (30)	NR	p = 0.062 No difference			
Total FFP volume, units Posacioglu 2002	4.45 ± 4.03 (40)	1.5 ± 1.37 (16)	NR	p = 0.006 Favours no cell salvage			
Length of hospital stay, days				0.007 5			
Posacioglu 2002 Shuhaiber 2003 Tawfick 2008	9.35 ± 7.566 (40) 13.8 ± 8.5 (4) 27.23 ± SE 1.021 (27) (range 2–138)	5.687 ± 4.301 (16) 12.6 ± 3.2 (21) 33.79 ± SE 0.435 (28) (range 3–122)	NR NR NR	p = 0.027 Favours no cell salvage p = NR No difference p = NR			
Length of ICU stay, days Shuhaibezr 2003 Tawfick 2008	2.5 ± 1.7 (4)	7.9 ± 7.9 (21)	NR NR	р = NR р = NR			

STUDY DETAILS: Shantikumar 2011

	7.42 ± SE 1.043 (27) (range 2–30)	9.38 ± SE 1.647 (28) (range 2–45)					
Length of HDU stay, days Shuhaiber 2003	5 ± 2.7 (4)	5.9 ± 8.7 (21)	NR	<i>p</i> = NR			
Length of ward stay, days Shuhaiber 2003	10 ± 7.9 (4)	12.8 ± 13.7 (21)	NR	<i>p</i> = NR			
Costs	None of the included studies reported costs associated with cell salvage or allogenic transfusions specific to the emergency AAA patient population.						

EXTERNAL VALIDITY

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is not directly generalisable to the Guidelines population but could be sensibly applied. OR difficult to judge?

Studies are in patients with ruptured abdominal aortic aneurysm repair, which is a narrower population than the guidelines (critical bleeding)

Applicability (relevance of the evidence to the Australian health care system)

The evidence is probably applicable to the Australian healthcare context with some caveats. Transfusion threshold varies across Australian hospitals and hence it is difficult to comment on the applicability of these results.

Additional comments

Authors conclusions:

While some data are conflicting, cell salvage appears to reduce blood-product use in both elective and ruptured AAA repairs. Owing to heterogeneity in methodology (e.g. type of aneurysm [infrarenal/suprarenal/complex], the use of different transfusion devices, heparin administration/reversal, transfusion thresholds), further studies are required before cell salvage becomes standard practice.

Whilst this suggests a role for routine cell salvage in aneurysm repairs, local protocols need to be based on the availability of cell salvage, the cost of blood products, the threshold for transfusion and the mean blood loss within the vascular unit.

List of relevant included studies:

Markovic 2009, Posacioglu 2002, Serracino-Inglott 2005, Shuhaiber 2003, Tawfick 2008

List of excluded studies (not relevant):

The authors mention five uncontrolled studies and eight nonrandomised controlled studies in the elective setting that did not meet our PICO criteria.

AAA, abdominal aortic aneurysm; AOD, aortoiliac occlusive disease; CI, confidence interval; Gi, gastrointestinal; MD, mean difference; RCT, randomised controlled trial; RR, relative risk; SC, single centre; SD, standard deviation

a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if P_{het} > 0.1 and I² < 25%; (ii) mild heterogeneity if I² < 25%; moderate heterogeneity if I² between 25–50%; substantial heterogeneity I² > 50%.

b. Data for Posacioglu 2002 incorrectly reported (intervention and control groups swapped). The primary study reports an effect favouring no cell salvage.

c. Incorrectly reported by Shantikumar 2011. Reported as p < 0.01 in Serracino-Inglott 2005.

d. This *p*-value refers to the difference in mean units RBC transfused for both the elective and emergency patients (reported by Tawfick 2008).

e. Excludes patients who died in the theatre from the analysis (Serracino-Inglott 2005).

f. Study not sufficiently powered to detect a significant difference for this outcome.

STUDY DETAILS: Meybohm 2016
Citation
Meybohm, P., Choorapoikayil, S., Wessels, A., Herrmann, E., Zacharowski, K., & Spahn, D. R. (2016). Washed cell salvage in surgical patients: A review and meta-analysis of prospective randomized trials under PRISMA. <i>Medicine</i> , 95(31), e4490 doi:https://dx.doi.org/10.1097/MD.000000000004490 PROSPERO registration number: CRD42016035726
Affiliation/Source of funds

University Hospital Frankfurt, University Hospital Zurich, Goethe University Frankfurt, Germany The authors noted no pharmaceutical company funding of the study.

STUDY DETAILS: Meybohm 2016 PM and KZ noted receiving honoraria with numerous companies associated with the conduct of a large clinical trial in the field of Patient Blood Management. Study design Level of evidence Location Settina SR of Level II studies Bowley 2006: South Africa SR: any surgical discipline Bowley 2006: trauma Intervention Comparator Intra- and/or postoperatively washed cell salvage (Cell No cell salvage saver) **Population characteristics** Surgical patients with no limit of age nor type of surgery. Included urgent and non-urgent surgery. The authors identified 47 studies, 15 in orthopaedic surgery, 21 in cardiac surgery, 6 in vascular surgery, 1 in multiple trauma surgery, 2 in cancer surgery, and 2 in paediatric surgery. Of these, 1 study was considered relevant to the PICO criteria outlined for Question 9. Bowley 2006: trauma surgery/massive bleeding Bowley 2006 randomised patients (aged > 18 years) presenting to emergency with penetrating torso injury requiring laparotomy and had exhibited hypotension (< 90 mm Hg); 91% (40/44) were male. Length of follow-up **Outcomes measured** Databases searched: Medline, Cochrane library, grey Primary: number of patients exposed to allogeneic RBC literature transfusion Search dates: Not stated. Study published Jul 2016 Secondary: Number of units of allogeneic blood transfused, Number of patients exposed to re-operation for bleeding, Number of exposed patients to plasma, Number of exposed patients to platelets, infectious complications, myocardial infarction, stroke, mortality, Length of hospital stay **INTERNAL VALIDITY Overall QUALITY of the systematic review (descriptive)** Rating (AMSTAR): High Description: The systematic review provides an accurate and comprehensive summary of the results of the available studies that address the question of interest. Risk of bias of included studies: Bowley 2006: low risk of bias for patient selection, all other domains assessed as unclear or high, likely due to poor reporting (outcome assessment was not blinded) **RESULTS: Risk estimate** Statistical significance Outcome Cell salvage No cell salvage (95% CI) No. patients (No. trials) n/N (%) n/N (%) p-value Mean ± SD Mean ± SD Heterogeneity ^a I² (p-value) Trauma setting Patients exposed to 21/21 (100) 23/23 (100) RR 1.00 (0.92, 1.09) No significant difference allogeneic RBC 00.f = q transfusion N = 44 (1 trial) Bowley 2006 Number of units of 6.47 ± 5.14 (21) 11.17 ± 6.06 (23) MD -4.70 (-8.01, -Favours cell salvage allogeneic blood 1.39) p = 0.005transfused, first 24 hours N = 44 (1 trial) Bowley 2006 Volume of FFP 4.76 ± 4.8 (21) 4.04 ± 4.3 (23) MD 0.72 (-1.98, 3.42) No significant difference transfused, first 24 p = 0.6hours, units ^b

N = 44 (1 trial)

STUDY DETAILS: Mey	bohm 2016					
Bowley 2006						
Volume of PLTs transfused, units ^b N = 44 (1 trial) Bowley 2006	1.0 ± 2.2 (21)	0.56 ± 0.94 (23)	MD 0.44 (-0.58, 1.46) °	No significant difference p = 0.40		
Infections (sepsis) N = 44 (1 trial) Bowley 2006	5/21 (23.8)	7/23 (30.4)	RR 0.78 (0.29, 2.09)	No significant difference p = 0.62		
Mortality, timing not specified ^d N = 44 (1 trial) Bowley 2006	14/21 (66.7)	15/23 (65.2)	RR 1.02 (0.67, 1.56)	No significant difference p = 0.92		
Length of hospital stay (survivors), days ^b N = 44 (1 trial) Bowley 2006	15.7 ± 9.17 (7) (median 13)	14.6 ± 6.8 (8) (median 13)	MD 1.10 (-7.17, 9.37)	No significant difference p = 0.79		
Financial cost, £ ⁵ N = 44 (1 trial) Bowley 2006	812.23 ± 451.23 (range 169.92, 1747.5)	990.4 ± 479.48 (range 19.9, 1753.3)	NR	No significant difference p = 0.2		
EXTERNAL VALIDITY						
Generalisability (relevar	ice of the study pop	ulation to the Guidel	ines target populatio	n)		
The evidence is directly g	eneralisable to the A	ustralian population v	vith some caveats			
One study comparing ce	II salvage versus no c	ell salvage in patients	undergoing multiple	trauma surgery.		
Applicability (relevance	of the evidence to t	he Australian health	care system)			
The evidence is directly a	pplicable to the Aust	ralian healthcare cont	text with few caveats			
The included study can b	e considered genera	lly applicable the Aust	tralian health care syst	em.		
Additional comments						
Out of the 47 trials incluc	led, only one trial (N =	= 44) included patient	s with trauma/massive	e transfusion.		
An additional seven stud module as patients were	ies were considered, scheduled for electiv	but later deemed moi ⁄e surgery.	re appropriate for asse	essment in the perioperative		
Authors conclusions						
Washed cell salvage is efficacious in reducing the need to allogenic RBC transfusion and risk of infection in surgery.						
AAA, Abdominal aortic aneurysm; Cl, confidence interval; FFP, fresh frozen plasma; MD, mean difference; mL, millilitre; PP, per-protocol; RBC, red blood cell; RCT, randomised controlled trial; RR, relative risk; SD, standard deviation; UK, United Kingdom; WMD, weighted mean difference						
a. Only applicable to Level I studies with formal meta-analysis. Heterogeneity defined as follows: (i) no significant heterogeneity if $P_{het} > 0.1$ and $I^2 < 25\%$; (ii) mild heterogeneity if $I^2 < 25\%$; moderate heterogeneity if I^2 between 25–50%; substantial heterogeneity $I^2 > 50\%$.						
b. Data sourced from primary study (Bowley 2006). c. Calculated post-boc using ReyMap 5.3. I-V. Random effects						
d. Cause of death was exsanguination (10/15) and MOF related to sepsis (5/15) in the control group; and exsanguination (8/14) or MOF related to sepsis (6/14) in the control group.						
e. Transfusion data expressed in mLs were converted to units by dividing by 300. . Up to 24 hours, hospital stay, 3 years, or not specified.						

STUDY DETAILS: Nayar 2017
Citation
Nayar, S. K., & Shafiq, B. (2017). Blood Conservation in Orthopaedic Trauma. <i>Techniques in Orthopaedics,</i> 32(1), 45-50. doi:http://dx.doi.org/10.1097/BTO.0000000000000208
Affiliation/Source of funds

The Johns Hopkins University School of Medicine

	گم امنده ا	idanaa	1		Catting
Study design	Level of ev	laence	Location		Setting
Narrative review of Leve II/III studies	arrative review of Level Level I III studies		Various		Orthopaedic trauma surgery
Intervention			Comparat	tor	
Blood conservation methods in orthopaedic trauma surgery including:			Any		
 Transfusion methods (autotransfusion, cell salvage, transfusion thresholds) Pharmacological agents (tranexamic acid, erythropoietin and iron supplementation, fibrin and thrombin sealants Operative techniques (hypotensive anaesthesia. 					
normovolemic her	nodilution, surgica	al approach)			
Population characteris	stics				
The population varied a	across studies in te	erms of type of or	rthopaedic tra	auma surgery.	
Studies that focused or excluded as participant	n cell salvage durir is were not critical	ng orthopaedic ti ly bleeding.	rauma surger	ry were reviewed for	r inclusion but later
Length of follow-up			Outcome	s measured	
Databases searched: PubMed, Embase, Cochrane Library, Scopus, Global Health and WHO Global Health Library; Regional libraries			Cost Rate of blo	ood transfusion	
Search dates: Not spec	nea. Review publis	shed 2017			
INTERNAL VALIDITY					
Overall QUALITY of the Rating (AMSTAR): Critic	e systematic revie	ew (descriptive)			
Overall QUALITY of the Rating (AMSTAR): Critic Description: More than critical flaw and should Risk of bias of included	e systematic revie cally low one critical flaw w not be relied on to studies: Risk of bia	with or without no o provide an acc as of included st	on-critical we urate and cor udies was not	aknesses – the revie mprehensive summ t assessed.	ew has more than one hary of the available studies
Overall QUALITY of the Rating (AMSTAR): Critic Description: More than critical flaw and should Risk of bias of included RESULTS:	e systematic revie cally low one critical flaw w not be relied on to <i>studies</i> : Risk of bia	ew (descriptive) with or without no o provide an acc as of included st	on-critical we urate and cor udies was not	aknesses – the revie mprehensive summ t assessed.	ew has more than one hary of the available studies
Overall QUALITY of the Rating (AMSTAR): Critic Description: More than critical flaw and should Risk of bias of included RESULTS: Outcome No. patients (No. trials)	e systematic revie cally low one critical flaw w not be relied on to <i>studies</i> : Risk of bia Cell salvage n/N (%) Mean ± SD	w (descriptive) with or without no o provide an acci as of included st No cell sal n/N (%) Mean ± SE	on-critical we urate and cor udies was not vage	aknesses – the revie mprehensive summ t assessed. Risk estimate (95% CI)	ew has more than one hary of the available studies Statistical significance p-value Heterogeneity l² (p-value)
Overall QUALITY of the Rating (AMSTAR): Critic Description: More than critical flaw and should Risk of bias of included RESULTS: Outcome No. patients (No. trials)	e systematic revie cally low one critical flaw w not be relied on to studies: Risk of bia Cell salvage n/N (%) Mean ± SD	ew (descriptive) with or without no o provide an acc as of included st No cell sal n/N (%) Mean ± SE	on-critical we urate and cor udies was not vage	eaknesses – the revie mprehensive summ t assessed. Risk estimate (95% CI)	ew has more than one hary of the available studies <i>Statistical significance</i> p-value Heterogeneity I ² (p-value)
Overall QUALITY of the Rating (AMSTAR): Critic Description: More than critical flaw and should Risk of bias of included RESULTS: Outcome No. patients (No. trials)	e systematic revie cally low one critical flaw w not be relied on to studies: Risk of bia Cell salvage n/N (%) Mean ± SD	ew (descriptive) with or without no o provide an acc as of included str No cell sal n/N (%) Mean ± SE	on-critical we urate and cor udies was not vage	eaknesses – the revie mprehensive summ t assessed. Risk estimate (95% CI)	ew has more than one hary of the available studies Statistical significance p-value Heterogeneity I ² (p-value)
Overall QUALITY of the Rating (AMSTAR): Critic Description: More than critical flaw and should Risk of bias of included RESULTS: Outcome No. patients (No. trials) EXTERNAL VALIDIT Generalisability (releve	e systematic revie cally low one critical flaw w not be relied on to studies: Risk of bia Cell salvage n/N (%) Mean ± SD	ew (descriptive) with or without no o provide an acc as of included stu No cell sal n/N (%) Mean ± SE	on-critical we urate and cor udies was not vage	aknesses – the revie mprehensive summ t assessed. Risk estimate (95% CI)	ew has more than one hary of the available studies Statistical significance p-value Heterogeneity I ² (p-value)
Overall QUALITY of the Rating (AMSTAR): Critic Description: More than critical flaw and should Risk of bias of included RESULTS: Outcome No. patients (No. trials) EXTERNAL VALIDIT Generalisability (relevant Not assessed	e systematic revie cally low one critical flaw w not be relied on to studies: Risk of bia Cell salvage n/N (%) Mean ± SD Y ance of the study	ew (descriptive) with or without no o provide an acc as of included str No cell sal n/N (%) Mean ± SE	on-critical we urate and cor udies was not vage	eaknesses – the revie mprehensive summ t assessed. Risk estimate (95% CI) s target populatior	ew has more than one hary of the available studies Statistical significance p-value Heterogeneity I ² (p-value)
Overall QUALITY of the Rating (AMSTAR): Critic Description: More than critical flaw and should Risk of bias of included RESULTS: Outcome No. patients (No. trials) EXTERNAL VALIDIT Generalisability (relevant Not assessed	e systematic revie cally low one critical flaw w not be relied on to studies: Risk of bia Cell salvage n/N (%) Mean ± SD Y ance of the study	w (descriptive) with or without no o provide an acc as of included str No cell sal n/N (%) Mean ± SE population to t	on-critical we urate and cor udies was not vage	eaknesses – the revie mprehensive summ t assessed. Risk estimate (95% CI) s target population	ew has more than one hary of the available studies Statistical significance p-value Heterogeneity I ² (p-value)
Overall QUALITY of the Rating (AMSTAR): Critic Description: More than critical flaw and should Risk of bias of included RESULTS: Outcome No. patients (No. trials) EXTERNAL VALIDIT Generalisability (relevant Not assessed	e systematic revie cally low one critical flaw w not be relied on to studies: Risk of bia Cell salvage n/N (%) Mean ± SD Y ance of the study	ew (descriptive) vith or without no o provide an acc as of included stu- No cell sal n/N (%) Mean ± SE population to t	on-critical we urate and cor udies was not vage () he Cuideline an health car	eaknesses – the revie mprehensive summ t assessed. Risk estimate (95% CI) s target population re system)	ew has more than one hary of the available studies Statistical significance p-value Heterogeneity I ² (p-value)
Overall QUALITY of the Rating (AMSTAR): Critic Description: More than critical flaw and should Risk of bias of included RESULTS: Outcome No. patients (No. trials) EXTERNAL VALIDIT Generalisability (relevance Not assessed Applicability (relevance Not assessed	e systematic revie cally low one critical flaw w not be relied on to studies: Risk of bia Cell salvage n/N (%) Mean ± SD Y ance of the study	ew (descriptive) vith or without no o provide an acci as of included str No cell sal n/N (%) Mean ± SE population to t	on-critical we urate and cor udies was not vage	eaknesses – the revie mprehensive summ t assessed. Risk estimate (95% CI) Is target population re system)	ew has more than one hary of the available studies Statistical significance p-value Heterogeneity I ² (p-value)
Overall QUALITY of the Rating (AMSTAR): Critic Description: More than critical flaw and should Risk of bias of included RESULTS: Outcome No. patients (No. trials) EXTERNAL VALIDIT Generalisability (relevanc Not assessed Applicability (relevanc Not assessed	e systematic revie cally low one critical flaw w not be relied on to studies: Risk of bia Cell salvage n/N (%) Mean ± SD Y ance of the study	ew (descriptive) with or without no o provide an acc as of included str No cell sal n/N (%) Mean ± SE population to t	on-critical we urate and cor udies was not vage	eaknesses – the revie mprehensive summ t assessed. Risk estimate (95% CI) s target population re system)	ew has more than one hary of the available studies Statistical significance p-value Heterogeneity I ² (p-value)
Overall QUALITY of the Rating (AMSTAR): Critic Description: More than critical flaw and should Risk of bias of included RESULTS: Outcome No. patients (No. trials) EXTERNAL VALIDIT Generalisability (relevant Not assessed Applicability (relevant Not assessed Additional comments Nayar 2017 was a narrat trauma. The review aut not provided any usabl	e systematic revie cally low one critical flaw w not be relied on to studies: Risk of bia Cell salvage n/N (%) Mean ± SD Y ance of the study ce of the evidence cive review that as hors identified sev e data. The primar	ew (descriptive) vith or without no o provide an acci- as of included str No cell sal n/N (%) Mean ± SE population to t to the Australian sessed blood cor- ven nonrandomis y studies were re-	on-critical we urate and cor udies was not vage f o he Guideline an health car nservation str sed studies in etrieved for fu	eaknesses – the revie mprehensive summ t assessed. Risk estimate (95% CI) s target population re system) rategies in the settin of their discussion of urther assessment.	ew has more than one hary of the available studies Statistical significance p-value Heterogeneity I² (p-value)
Overall QUALITY of the Rating (AMSTAR): Critic Description: More than critical flaw and should Risk of bias of included RESULTS: Outcome No. patients (No. trials) EXTERNAL VALIDIT Generalisability (relevanc Not assessed Applicability (relevanc Not assessed Additional comments Nayar 2017 was a narrat trauma. The review aut not provided any usabl Excluded studies	e systematic revie cally low one critical flaw w not be relied on to studies: Risk of bia Cell salvage n/N (%) Mean ± SD Y ance of the study ce of the evidence cive review that ass hors identified sev e data. The primar	ew (descriptive) with or without no o provide an acci- as of included str No cell sal n/N (%) Mean ± SE population to t e to the Australian sessed blood cor- y studies were re-	on-critical we urate and cor udies was not vage f o he Guideline an health car nservation str sed studies in etrieved for fu	eaknesses – the revie mprehensive summ t assessed. Risk estimate (95% CI) s target population re system) ategies in the settir n their discussion of urther assessment.	ew has more than one hary of the available studies Statistical significance p-value Heterogeneity I ² (p-value)
Overall QUALITY of the Rating (AMSTAR): Critic Description: More than critical flaw and should Risk of bias of included RESULTS: Outcome No. patients (No. trials) EXTERNAL VALIDIT Generalisability (relevand Not assessed Applicability (relevand Not assessed Additional comments Nayar 2017 was a narrat trauma. The review aut not provided any usabl <i>Excluded studies</i> The studies were review patients were not critic	e systematic revie cally low one critical flaw w not be relied on to studies: Risk of bia Cell salvage n/N (%) Mean ± SD Y ance of the study ce of the evidence tive review that as hors identified sev e data. The primar ved, but later deer ally bleeding.	w (descriptive) with or without no oprovide an acci- as of included strict No cell sal n/N (%) Mean ± SE population to t to the Australian sessed blood cor- y studies were re- med more appro-	on-critical we urate and cor udies was not vage 4 o he Cuideline an health car nservation str sed studies in etrieved for fu	eaknesses – the revie mprehensive summ t assessed. Risk estimate (95% CI) s target population re system) rategies in the settir a their discussion of urther assessment. essment in the peri	ew has more than one hary of the available studies Statistical significance p-value Heterogeneity I² (p-value)
Overall QUALITY of the Rating (AMSTAR): Critic Description: More than critical flaw and should Risk of bias of included RESULTS: Outcome No. patients (No. trials) EXTERNAL VALIDIT Generalisability (relevand Not assessed Applicability (relevand Not assessed Additional comments Nayar 2017 was a narrat trauma. The review aut not provided any usabl <i>Excluded studies</i> The studies were review patients were not critic Bigsby 2013, Canan 2013	e systematic revie cally low one critical flaw w not be relied on to studies: Risk of bia Cell salvage n/N (%) Mean ± SD Y ance of the study ce of the evidence cive review that as hors identified sev e data. The primar ved, but later deer ally bleeding. 3, Cavallieru 1994, f	ew (descriptive) vith or without no o provide an acci- as of included str No cell sal n/N (%) Mean ± SE population to t e to the Australian sessed blood corr ven nonrandomis y studies were re- med more appro Firoozobadi 2015	on-critical we urate and cor udies was not vage I he Guideline an health car inservation str sed studies in etrieved for fu priate for ass , Odak 2013, S	eaknesses – the revie mprehensive summ t assessed. Risk estimate (95% CI) s target population re system) rategies in the settim their discussion of urther assessment. essment in the peri Scannell 2009, Schm	ew has more than one hary of the available studies Statistical significance p-value Heterogeneity I² (p-value) n) ng of acute orthopaedic cell salvage, however, did operative module as hidt 1998

Randomised controlled trials

No additional studies identified.

Observational / cohort studies

STUDY DETAILS: Bhangu 2012 Citation Bhangu, A., Nepogodiev, D., Doughty, H., Bowley D. (2012). Intraoperative cell salvage in a combat support hospital: a prospective proof of concept study. Transfusion, 1-6. doi: 10.1111/j.1537-2995.2012.03835.x Affiliation/Source of funds From the Joint Force Hospital, Camp Bastion, Afghanistan, Op HERRICK, BFPO 792. Details on funding not provided. The authors declared no conflicts of interest. Study design Level of evidence Location Setting 111-2 Camp Bastion, Afghanistan Trauma setting, combat Prospective cohort support hospital proof of concept study Intervention Comparator Cell salvage via washed system using centrifuge No cell salvage **Population characteristics** A total of 130 patients were admitted having sustained combat-related injury (76% blast-injury, 22% gun-shot, 2% road). Twenty-nine patients were judged by the attending military surgeon (DB) to be likely to require massive blood transfusion*, of which 27 were identified on admission. Eighteen cases were selected for intraoperative blood salvage and salvage was successfully completed in 17 (one patient died on operating table before cell salvage could occur). Eleven patients who underwent MT did not undergo cell salvage; nine patients arrived at the same time as other patients in whom cell salvage was planned or ongoing. The remaining two patients were not identified on admission but went on to require high volumes of blood products. *require at least 10 units of RBCs in the first 12 hours after injury (12 hr was taken as a cut-off, as International Security and Assistance Force casualties are evacuated to home nation as soon as possible, once clinical stability has been achieved). Length of follow-up **Outcomes measured** No follow-up specified. Volume of cell salvage required (units). Method of analysis Continuous data are presented as median and interquartile range (IQR); differences between groups were tested using the Mann-Whitney U test. **INTERNAL VALIDITY Overall QUALITY of the systematic review (descriptive)** Rating: Serious

Description: The study has some important problems and does not to provide any useful evidence on the effectiveness of the intervention. There is insufficient information regarding patient characteristics to assess potential confounders.

STUDY DETAILS: Bhangu 2012							
RESULTS							
Population analysed	Cell salvage		No cell salvage				
Available	17		11				
Analysed	17		11				
Outcome	Cell salvage Median (IQR)	No cell salvage Median (IQR)	Risk estimate (95% CI)	Statistical significance p-value			
Cell salvage vs no cell salva	ige	·					
Volume of RBC transfused, units N = 17 Mechanism of injury (n) GSW (4)	14 (9.5–18.5); range 2–27 11 (4.25–14.75) 17 (9.5–20.5)	Total 463 (n = 130)	The authors estimated a potential 7.6% reduction when compared to allogeneic transfusions in the	NR Test for subgroup difference p = 0.212			
Blast (13) Body area (n) Cavity (8) Extremity (9)	9.5 (4.25–11.0) 18 (15.5–22.5)		overall 130 patient cohort; and a potential median reduction of 98% per patient.	p = 0.001			
Volume of plasma transfused, units Mechanism of injury (n) CSW (4) Blast (13) Body area (n) Cavity (8) Extremity (9)	11.5 (4.25–16.5) 17 (10–22) 10 (4–13.5) 21 (15.5–24)			Test for subgroup difference p = 0.192 p = 0.004			
Volume of PLTs transfused, units Mechanism of injury (n) GSW (4) Blast (13) Body area (n) Cavity (8) Extremity (9)	2 (0.5–4.25) 3 (2–5) 2 (0.25–4.25) 3 (2.5–5.5)			Test for subgroup difference p = 0.327 p = 0.050			
Volume of CRYO transfused, units Mechanism of injury (n) GSW (4) Blast (13) Body area (n) Cavity (8) Extremity (9) EXTERNAL VALIDITY	1 (0.25–1.75) 2 (1–2) 1 (0–1.75) 2 (1–2)			Test for subgroup difference p = 0.335 p = 0.046			

Generalisability (relevance of the study population to the Guidelines target population)

The evidence is not directly generalisable to the Australian population but could be sensibly applied. Patients were admitted to a combat support hospital with battle-related injury. Blast injuries, often from improvised explosive devices, drive environmental material deep into patients' wounds, leading to gross contamination.

Applicability (relevance of the evidence to the Australian health care system)

The evidence is not applicable to the Australian healthcare context, and it is difficult to judge if it is sensible to apply.

STUDY DETAILS: Bhangu 2012

Additional comments

The results of this study present more arguments against IBS than for it in a combat setting; showing that there is no place for IBS in the management of blast injury to the extremities. Nevertheless, IBS does have the potential to offer resilience during periods of limited RBC supply and further experimental, clinical, and economic evaluation is required.

Cl, confidence interval; GSW, gunshot wound; IBS, intraoperative blood salvage; ITT, intention-to-treat; NR, not reported; PP, per-protocol; RBC, red blood cell; RCT, randomised controlled trial; SD, standard deviation